IPv6

From an Application Layer Perspective

Patrik Fältström

Area Director, Applications Area, IETF Consulting Engineer, Cisco Systems

Agenda

- What are Applications?
- Why is end-to-end so important?
- What is IPv6 solving for Applications?

◆ Summary...

Application Layer

Contrary to traditional communication,
 we have three layers on the Internet

Application

Transmission

Application Layer

Contrary to traditional communication,
 we have three layers on the Internet

Application

Internet (IP)

Transmission

Why is this so important?

- With three layers, the application layer ends up being independent from the transmission
- As soon as you have IP connectivity,
 you can run any application using IP
- Previously, you had to change
 application if transmission changes

How does this work?

- Create a packet
- ◆ Include your (sender) information
- ◆ Add address of destination
- ◆ Send on your local interface
- ◆ Packet will reach destination
 - ◆ Or you will be told otherwise

Addressing

Absolutely fundamental is the existence of the 5-tuple which identifies a connection!

Simple "fetch"

- A simple fetch in a
 TCP-based protocol
 is more than one
 exchange of packets
- ◆ HTTP 1.1 spec. is 176 pages long!

A simple network

◆ Two hosts connected to the same cable

The Internet

Routing is introduced

Firewall Internet

- ◆ In some cases, firewalls are used
- ◆ People mix up firewalls with NAT

◆ Security can also be inside endnode

◆ As part of the connection to Internet

 ◆ It is possible to open a connection towards the Internet through a firewall

 But, from the Internet, connections are blocked

One address

◆ The NAT box remembers a connection

One connection

Inside
Source: 192.168.1.1:6712
Destination: 67.32.12.3:25

Protocol: TCP

This sort of works

- ◆ When connecting to servers
- ◆ A strict client-server relationship

But...

◆ Can host X connect to host A?

Mapping

 "If connection is initiated towards outside port 80, forward to 192.168.1.2 on inside, port 80"

 This makes it possible to connect to host A, but not host B

Protocols

- ◆ Both SIP and FTP (as two example) have two channels
- ◆ Control channel
 - Negotiation of data channel,
 commands and other signaling
- Data channel
 - Where data is transferred

VOIP

◆ What IP address and port number is to be used for the actual call?

NAT is not fun!

- The problem is that the client doesn't know what IP address and port number to use
- ◆ Those values are allocated in the NAT

Network configuration is uglier and uglier

What about IPv6

- ◆ Some people claim IPv6 will solve
 - Routing issues
 - ◆ Security issues
 - Quality of service issues
 - Addressing issues
- ◆ Is that true?

What about IPv6?

- ◆ We will have many, many addresses
 - ◆ In IPv6 world, we don't need NAT
 - ◆ IPv6 give an opportunity for new applications
- Applications have to be changed
 - Contrary to what many people think

VOIP

With public IP addresses and no NAT,
 this ends up being so simple

Why not more IPv6?

- ◆ It's a Catch-22:
 - People are not asking for it
 - Vendors and ISP's are not implementing
 - It is not deployed

Problems

- ◆ IPv6 is nothing extra for the end user
 - "ping" is not that exciting
- ◆ ISP can not charge for introduction
 - ◆ Still, it cost an ISP money to deploy
- Real IP addresses is THE new thing!
 - ◆ Consumer might understand...

Solution:

- ◆ Interested parties must start using IPv6
- The European Commission and governments by requiring it on all IP connections they buy
 - http://europa.eu.int over IPv6?
- Applications will help (and need) IPv6
 deployment via non-NAT networks

Questions?

Patrik Fältström

Email: paf@cisco.com

