IPv6 Cluster
IPv6 Research and Development in Europe
IPv6 Cluster

IPv6 Research and Development in Europe

Edited by the IPv6 Cluster with the support of 6LINK.

This booklet was first published in November 2002 during the IST 2002 conference in Copenhagen, Denmark.

Editorial team:
- Jordi Palet - Responsible for All-IPv6-World WG and IST 2002/IPv6 Activities
- Matthew Ford - IPv6 Cluster Chair
- Pascal Drabik - EC Scientific Officer
- Jose-Joaquim Fernandes - EC Scientific Officer

This booklet was made possible thanks to the cooperation and contributions of the IPv6 Cluster projects, and from the participants of the All-IPv6-World Working Group.

If you have any questions or comments or you would like to receive another copy of this booklet, please visit http://www.ist-ipv6.org. On-line PDF version also available.

Copyright 2002 EC IST IPv6 Cluster.

Reproduction in whole or in part is only authorized with explicit reference to this source.

IPv6 Cluster Projects

<table>
<thead>
<tr>
<th>Project</th>
<th>Project Name</th>
<th>Website</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>6HOP</td>
<td>Protocols for Heterogeneous Multi-Hop Wireless IPv6 Networks</td>
</tr>
<tr>
<td>20</td>
<td>GNT</td>
<td>IPv6 Network InterPlay</td>
</tr>
<tr>
<td>22</td>
<td>GLEK</td>
<td>IPv6 Projects Linkage Cluster</td>
</tr>
<tr>
<td>24</td>
<td>GIE</td>
<td>Large-scale International IPv6 Pilot Network</td>
</tr>
<tr>
<td>26</td>
<td>6POWER</td>
<td>IPv6, QoS & Power Line Integration</td>
</tr>
<tr>
<td>28</td>
<td>GIM</td>
<td>IPv6 QoS Measurement</td>
</tr>
<tr>
<td>30</td>
<td>6WANT</td>
<td>IPv6 Wireless Internet InterPlay</td>
</tr>
<tr>
<td>32</td>
<td>Euro6X</td>
<td>European IPv6 Internet Exchange Backbone</td>
</tr>
<tr>
<td>34</td>
<td>Euro6</td>
<td>The European IPv6 Showcase</td>
</tr>
<tr>
<td>36</td>
<td>6QAP</td>
<td>Global Communication Architecture & Protocols for new QoS services over IPv6 networks</td>
</tr>
<tr>
<td>38</td>
<td>IPv6 TF-SC</td>
<td>IPv6 Task Force Steering Committee</td>
</tr>
<tr>
<td>40</td>
<td>LC3</td>
<td>Laboratories over Next Generation Networks</td>
</tr>
<tr>
<td>46</td>
<td>63HOM</td>
<td>Network appliances and services for the Home environment</td>
</tr>
<tr>
<td>48</td>
<td>ANDROID</td>
<td>Active Networks Distributed Open Infrastructure Development</td>
</tr>
<tr>
<td>50</td>
<td>OLM</td>
<td>Creation of User Friendly Mobile Services Personalised for Tourism</td>
</tr>
<tr>
<td>52</td>
<td>DRI</td>
<td>Dynamic Radio for IP-Services in Vehicular Environments</td>
</tr>
<tr>
<td>56</td>
<td>GEANT</td>
<td>The pan-European Gigabit research network</td>
</tr>
<tr>
<td>58</td>
<td>HARMONICS</td>
<td>Multi-wavelength Optical Networks for IP-based Communication Services</td>
</tr>
<tr>
<td>60</td>
<td>INTERMON</td>
<td>Advanced architecture for INTER-domain quality of service</td>
</tr>
<tr>
<td>62</td>
<td>MESSAL</td>
<td>Management of End-to-End Quality of Service Across the Internet at Large Scale</td>
</tr>
<tr>
<td>64</td>
<td>NET</td>
<td>Mobile IP based Network Developments in a Future IP Network</td>
</tr>
<tr>
<td>66</td>
<td>MobiDay</td>
<td>Mobility and Differentiated Services</td>
</tr>
<tr>
<td>68</td>
<td>NDN</td>
<td>Next Generation Networks Initiative</td>
</tr>
<tr>
<td>70</td>
<td>NDN-LAB</td>
<td>Next Generation Networks Laboratories</td>
</tr>
<tr>
<td>72</td>
<td>SEREN</td>
<td>South Eastern European Research and Education Networking</td>
</tr>
<tr>
<td>74</td>
<td>TORRENT</td>
<td>Technology for a Realistic End User Access Network Test-bed</td>
</tr>
<tr>
<td>78</td>
<td>xMOTION</td>
<td>Mobile Test-bed for Interoperability of Networks in Logistics</td>
</tr>
</tbody>
</table>
Country Codes

<table>
<thead>
<tr>
<th>Country Code</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Austria</td>
</tr>
<tr>
<td>AL</td>
<td>Albania</td>
</tr>
<tr>
<td>B</td>
<td>Belgium</td>
</tr>
<tr>
<td>BA</td>
<td>Bosnia and Herzegovina</td>
</tr>
<tr>
<td>BG</td>
<td>Bulgaria</td>
</tr>
<tr>
<td>CH</td>
<td>Switzerland</td>
</tr>
<tr>
<td>CY</td>
<td>Cyprus</td>
</tr>
<tr>
<td>CZ</td>
<td>Czech Republic</td>
</tr>
<tr>
<td>D</td>
<td>Germany</td>
</tr>
<tr>
<td>DK</td>
<td>Denmark</td>
</tr>
<tr>
<td>E</td>
<td>Spain</td>
</tr>
<tr>
<td>EE</td>
<td>Estonia</td>
</tr>
<tr>
<td>EL</td>
<td>Greece</td>
</tr>
<tr>
<td>F</td>
<td>France</td>
</tr>
<tr>
<td>FIN</td>
<td>Finland</td>
</tr>
<tr>
<td>YU</td>
<td>Yugoslavia</td>
</tr>
<tr>
<td>MD</td>
<td>Macedonia</td>
</tr>
<tr>
<td>HU</td>
<td>Hungary</td>
</tr>
<tr>
<td>IT</td>
<td>Italy</td>
</tr>
<tr>
<td>IL</td>
<td>Israel</td>
</tr>
<tr>
<td>IRL</td>
<td>Ireland</td>
</tr>
<tr>
<td>JP</td>
<td>Japan</td>
</tr>
<tr>
<td>KR</td>
<td>South Korea</td>
</tr>
<tr>
<td>LT</td>
<td>Latvia</td>
</tr>
<tr>
<td>LU</td>
<td>Luxembourg</td>
</tr>
<tr>
<td>ME</td>
<td>Montenegro</td>
</tr>
<tr>
<td>NL</td>
<td>Netherlands</td>
</tr>
<tr>
<td>NO</td>
<td>Norway</td>
</tr>
<tr>
<td>P</td>
<td>Portugal</td>
</tr>
<tr>
<td>PL</td>
<td>Poland</td>
</tr>
<tr>
<td>RO</td>
<td>Romania</td>
</tr>
<tr>
<td>S</td>
<td>Sweden</td>
</tr>
<tr>
<td>SG</td>
<td>Singapore</td>
</tr>
<tr>
<td>SI</td>
<td>Slovenia</td>
</tr>
<tr>
<td>SK</td>
<td>Slovakia</td>
</tr>
<tr>
<td>UK</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>US</td>
<td>United States of America</td>
</tr>
</tbody>
</table>

Project Types

- AM: Accompanying Measures
- RTD: Research and Technology Development
- TN: Thematic Network
- TU: Take-Up

IPv6 Cluster

IPv6 Research and Development in Europe
IPv6 Research and Development in Europe

1. About this booklet

This booklet was first published in November 2002 during the IST2002 conference in Copenhagen, Denmark. It is one of the activities that the IST IPv6 Cluster is supporting, which will include joint project demonstrations in the conference exhibition hall, and several workshops addressing both political and technical issues.

2. What is IPv6?

IPv6 is an upgrade to the data networking protocols that power the Internet. The Internet Engineering Task Force (IETF) developed the basic specifications during the 1990s after a competitive design phase used to select the best overall solution. The primary motivation for the design and deployment of IPv6 is to expand the available “address space” of the Internet, thereby enabling billions of new devices (PDAs, cellular phones, appliances, etc.), new users (countries like China, India, etc.), and new “always-on” networking paradigms, facilitating peer-to-peer applications, end-to-end security, and avoiding network address translators.

Some interesting features to mention are the removal of the checksum field from the IPv6 header (checksumming is now performed by upper layers), and the removal of fragmentation-related fields (fragmentation is performed end-to-end). In fact, most IPv6 “options” (now called “extension headers”, with no limit to their size or number), are also processed end-to-end, obviating the need for routers to perform tasks other than simple packet forwarding.

Taken together, these features provide the means for restoring the end-to-end Internet paradigm, facilitating peer-to-peer applications, and end-to-end security, and avoiding network address translators.

3. IPv6 in the 5th Framework Programme

The European Commission Information Society Technologies Programme is funding a number of projects with a very important focus on IPv6 research and development activities. These projects represent a huge investment on behalf of the EC (over €100M) and the project partners.

Projects can be divided into two groups. The projects of the first group, that can be called IPv6 Projects, have a particular emphasis on IPv6, with the main goal being the research and development related to the protocol itself. Projects of the second group, then can be called IPv6 Related Projects, are employing IPv6 as part of their broader goals.

The projects are addressing several complementary areas. Too large a scale experimentation platforms are investigating the real deployment of IPv6. Some other projects are devoted to the promotion of IPv6. The political dimension is also addressed on a large set of projects addressing different technical aspects related to IPv6 (e.g. IPv4 to IPv6 transition, Quality of Service, etc.).

The IPv6 projects as well as the IPv6 related projects have been collaborating in the frame of the IPv6 Cluster since June 2001. A specific project, 6LINK, is supporting the activity of the IPv6 Cluster.

To aid the reader in understanding the scope of IPv6-related research being undertaken as part of the IST 5th Framework Programme, the following sections will identify projects with a specific focus on IPv6 and those were IPv6 is incidental to their objectives, summarizing what has been done during FP5.

4. Projects where IPv6 is the main focus

These projects cover a broad number of research and development aspects. Starting in January 2000, 6INIT was one of the first attempts to validate the introduction of IPv6 technology in Europe. 6GOF studied multicast and QoS based on IPv6 and DiffServ in relation to active networking technology.

The goal of the VANET project was to build fully IPv6-based globally optimized wireless Internet environments with QoS awareness. In December 2000, 6Link was initiated with the aims to foresee and solve problems related to the design, configuration and deployment of IPv6, especially when new services and applications are involved.

6WING continued the work done in 6INIT, but with an emphasis on wireless access and IP mobility, combining IPv6, CRPS, and 3GPP UMTS.

GNDT and SurvIX started in January 2002, as major projects for the broad deployment of IPv6 in Europe, building dedicated, native IPv6 networks, involving National Research and Education Networks, telcos and ISPs, in a complementary approach, and considering other aspects like applications and Internet Exchanges.
IPv6 Research and Development in Europe

In March 2002, the 5G8E project started to examine the technical issues facing satellite broadband access in the coming years, including adaptation of DBM-RCS for IP and IPv6 introduction.

OwenCRUISE aims at UMTS enhancements and the coordination of existing radio networks into a hybrid network to ensure spectrum efficient, provision of mobile multimedia services, based on the IPv6 architecture.

GCDON previously stated in July 2002 with the main goal of contributing to ensure affordable broadband access and the deployment of IPv6 in Europe. Using Power Line Technology, and advanced network services such as QoS and multicast.

IPv6-RT develops a comprehensive approach towards IPv6 QoS measurement.

SHOPLab studies how multi-hop heterogeneous wireless IPv6 networks can support mobility of users, packet routing and adaptation to varying link conditions.

In addition, three special projects were started in March, July and October 2002, respectively, as accompanying measures to the research and development projects:

- GLINK was designed in order to support the IPv6 Cluster activities, via consensus building, dissemination of consensus agreements and exploitation of the consensus;
- BouRari was designed to ensure the usage of IPv6 products and services and their impact on anyone, by means of fixed and mobile service providers and to quickly propose measures to the appropriate bodies, to involve the European Commission and to verify sustained activities and implementation of proposed measures, towards the global deployment of IPv6.
- Battoradio and the IPv6 TF-SC include special liaison with similar international initiatives, in order to raise political and industrial awareness related to IPv6 on a global scale.

5. The European IPv6 Task Force

The European Commission invited an IPv6 Task Force driven by major and key European and worldwide players, to develop a comprehensive action plan by the end of 2003, aiming at ensuring the timely availability of IPv6.

The conclusions and recommendations of the Task Force were successfully submitted to the European Council Spring Meeting of 2002, under the Spanish presidency (Barcelona), and in the context of this document, a series of recommendations pertaining to the implementation of IPv6 by all relevant ICT sectors were proposed by the Commission.

As a result, the Heads of State resolution was to prioritise the widespread availability of broadband networks throughout the Union by 2005 and the deployment of IPv6 by 2006.

The main achievements of the Task Force were:

- Establish an appropriate infrastructure to operate the first IPv6 TF-SC project, started in June 2000, whose aim is to design a means of managing active services through the use of policies. Several IPv6 application layer software modules being developed.
- The overall aim of the CRUMPET project is to implement, validate, and trial tourism related value-added services for nomadic users (across mobile and fixed networks).
- As indicated earlier, the following projects aren't specially focused on IPv6, but have some related activities, rely on IPv6 networks or will run with IPv6, sooner or later.

6. IPv6 Related Projects

As indicated earlier, the following projects aren't specially focused on IPv6, but have some related activities, rely on IPv6 networks or will run with IPv6, sooner or later.

- In April 2000, CRUMPET started aiming at enabling spectrally efficient, high-quality wireless IP in a heterogeneous multi-radio environment to deliver in-vehicle multimedia services, including the design of an IPv6-based mobile infrastructure that ensures the inter-working of different radio systems.
- HARMONIC proposes a common dynamically reconfigurable fibre infrastructure, deploying flexible wavelength routing integrated with flexible time slot allocation in a new Medium Access Control protocol.
- ANDROID is an Active Networks project, started in June 2000, whose aim is to design a means of managing active services through the use of policies. Several IPv6 application layer software modules are being developed.
- The main goal of the 6POWER project is to promote the use of IPv6 in Europe, using Power Line Technology, and the deployment of IPv6 on a global scale.
- The IPv6 Cluster project started to examine the technical issues facing satellite broadband access in the coming years, including adaptation of DBM-RCs for IP and IPv6 introduction.

GÉANT establishes a platform for the development of advanced Internet technologies, by provisioning the required system infrastructure and interactive applications, to realise Next Generation Network related experiments.

CRUMPET started, aiming at enabling spectrally efficient, high-quality wireless IP in a heterogeneous multi-radio environment to deliver in-vehicle multimedia services, including the design of an IPv6-based mobile infrastructure that ensures the inter-working of different radio systems.

CRUMPET proposes a common dynamically reconfigurable fibre infrastructure, deploying flexible wavelength routing integrated with flexible time slot allocation in a new Medium Access Control protocol.

6POWER is an Active Networks project, started in June 2000, whose aim is to design a means of managing active services through the use of policies. Several IPv6 application layer software modules are being developed.

As indicated earlier, the following projects aren't specially focused on IPv6, but have some related activities, rely on IPv6 networks or will run with IPv6, sooner or later.

- In April 2000, CRUMPET started aiming at enabling spectrally efficient, high-quality wireless IP in a heterogeneous multi-radio environment to deliver in-vehicle multimedia services, including the design of an IPv6-based mobile infrastructure that ensures the inter-working of different radio systems.
- HARMONIC proposes a common dynamically reconfigurable fibre infrastructure, deploying flexible wavelength routing integrated with flexible time slot allocation in a new Medium Access Control protocol.
- ANDROID is an Active Networks project, started in June 2000, whose aim is to design a means of managing active services through the use of policies. Several IPv6 application layer software modules are being developed.
- The main goal of the 6POWER project is to promote the use of IPv6 in Europe, using Power Line Technology, and the deployment of IPv6 on a global scale.
- The IPv6 Cluster project started to examine the technical issues facing satellite broadband access in the coming years, including adaptation of DBM-RCs for IP and IPv6 introduction.

6POWER is an Active Networks project, started in June 2000, whose aim is to design a means of managing active services through the use of policies. Several IPv6 application layer software modules are being developed.

As indicated earlier, the following projects aren't specially focused on IPv6, but have some related activities, rely on IPv6 networks or will run with IPv6, sooner or later.

- In April 2000, CRUMPET started aiming at enabling spectrally efficient, high-quality wireless IP in a heterogeneous multi-radio environment to deliver in-vehicle multimedia services, including the design of an IPv6-based mobile infrastructure that ensures the inter-working of different radio systems.
- HARMONIC proposes a common dynamically reconfigurable fibre infrastructure, deploying flexible wavelength routing integrated with flexible time slot allocation in a new Medium Access Control protocol.
- ANDROID is an Active Networks project, started in June 2000, whose aim is to design a means of managing active services through the use of policies. Several IPv6 application layer software modules are being developed.
- The main goal of the 6POWER project is to promote the use of IPv6 in Europe, using Power Line Technology, and the deployment of IPv6 on a global scale.
- The IPv6 Cluster project started to examine the technical issues facing satellite broadband access in the coming years, including adaptation of DBM-RCs for IP and IPv6 introduction.
7. IPv6 Working Group

Supporting the eEurope 2005 plan, this group has considered several research and development areas or topics related to IPv6 aspects, including broadband, 3G+, optical, communications and networking, new access technologies, network management, traffic engineering, new broadcasting technologies, DVB, Digital and Interactive TV, security, wireless technologies, GRID, Service Creation, Home and Industrial Automation, Intelligent Systems, amongst others, in addition to some considerations at political and marketing levels.

7.1 Objectives

The targets of the current projects include different aspects like wireless, large-scale deployment, Quality of Service and so on. It became necessary to identify clearly what are the different building blocks needed for the deployment of IPv6. With such a picture in mind, this group tried to map the expected results to some of the requested building blocks and therefore understand better what remains to be done.

The main goal has been to identify, as clearly as possible, what IPv6 research and development still remains to be done, what are the missing pieces in the puzzle of IPv6 deployment?

Some of the questions that the WG tried to answer are:

1. What is needed to get IPv6 deployed in the near future?
2. What activities that we already do using IPv4 are still incomplete with IPv6?
3. What new can we do with IPv6?
4. What can we enhance thanks to IPv6?
5. What problems still exist that aren’t resolved sufficiently or that you feel have better approaches?

7.2 Participants

Over 80 entities, mainly from the EC, but including also a few from Japan, China, Korea, India, Taiwan, Russia, Switzerland, Turkey, Israel, US and Canada, have participated actively. In order to participate in this working group it was necessary to contribute in advance of the meetings. There are several reasons for this, including ensuring the relevance and quality of the work, and having it distributed to the rest of the participants before the meeting, in order to guarantee that the meeting time is not spent in presenting these documents, and instead good technical debate is achieved.
<table>
<thead>
<tr>
<th>No.</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Ad-hoc networks (incl. Pans) for small (and embedded) devices</td>
</tr>
<tr>
<td>2.</td>
<td>Applications for the transport business (that can’t be satisfied with IPv4): Air-transport, Ground-transport, Sea-transport</td>
</tr>
<tr>
<td>3.</td>
<td>Other application areas: Telemedicine, e-commerce, Virtual presence, CRx, Multimedia, CDLa (e.g. for education e-learning), incl. QoS Astrophysics (including synchronisation)</td>
</tr>
<tr>
<td>4.</td>
<td>Service security (requires inputs from the specific application areas)</td>
</tr>
<tr>
<td>5.</td>
<td>End-to-end security (global architectures, VMN)</td>
</tr>
<tr>
<td>6.</td>
<td>Service and application roaming, VHE, charging</td>
</tr>
<tr>
<td>7.</td>
<td>Reconfigurable and adaptable applications</td>
</tr>
<tr>
<td>8.</td>
<td>Services for handicapped people</td>
</tr>
<tr>
<td>9.</td>
<td>Scalable new services (multicast-related) inc. voice, video, QoS and automatic deployment of the services (including programmability)</td>
</tr>
<tr>
<td>10.</td>
<td>Mobility and emergency services (Tetra)</td>
</tr>
<tr>
<td>11.</td>
<td>Mobility and emergency services (Tetra)</td>
</tr>
<tr>
<td>12.</td>
<td>General mobility (including 4G, header compression)</td>
</tr>
<tr>
<td>13.</td>
<td>Multihoming and emergency services (Tetra)</td>
</tr>
<tr>
<td>14.</td>
<td>Solutions for deployment scenarios according to entities (ISPs, global corporates, SMEs), services, multihoming, multihosting, mirrored IPv6 data centres, multi-tenant buildings and transition</td>
</tr>
<tr>
<td>15.</td>
<td>Toolkit for creating/developing IPv6 services and applications (improving middleware framework)</td>
</tr>
<tr>
<td>16.</td>
<td>European IPv6 stack</td>
</tr>
<tr>
<td>17.</td>
<td>Conformance Testing & Interoperability (plug and play, performance)</td>
</tr>
<tr>
<td>18.</td>
<td>Home networks (e.g. global vs local addresses, usability, terminal portability, plug and play security, MH home protocol, etc.)</td>
</tr>
<tr>
<td>19.</td>
<td>Marketing (unique selling points: addresses, QoS, mobility, etc.), education, training, awareness creation, and standards</td>
</tr>
<tr>
<td>20.</td>
<td>Long-term research objectives: id/location separation</td>
</tr>
</tbody>
</table>

7.3 Meetings and Results

Most of the participants met in Brussels on the 14th of June and a second time on the 1st of October. At the moment, as a result of these meetings, a top-down approach (i.e. starting with the identification of application areas and user requirements) has been decided upon. Several topic groups were formed, according to the table in the previous page, and one or two people were nominated to write a brief description about the theme. In summary, it appears that research and development activities related to IPv6 should focus on services and applications built over and using IPv6. In FP6, as a result of the IPv6 Task Force efforts, and as recommended in the last Communication to the Council and the e-Europe 2005 plan, a number of new IPv6 focused projects are expected.
Protocols for Heterogeneous Multi-Hop Wireless IPv6 Networks

Abstract

6HOP studies how multi-hop heterogeneous wireless IPv6 networks can support mobility of users, packet routing and adaptation to varying link conditions. 6HOP aims to research and demonstrate a heterogeneous wireless IPv6 network consisting of several different wireless technologies. End-to-end optimization for IPv6 based services over multi-hop heterogeneous wireless networks with respect to throughput, power consumption and implementation complexity will be provided. The results from previous IST project WINE using a platform independent wireless adaptation layer will be exploited, streamlined and extended.

Objectives

- To specify, design and demonstrate a heterogeneous multi-hop wireless IPv6 network consisting of a combination of WPAN and WLAN technologies in the 2.4 GHz and 5 GHz ISM bands and possible connection to public cellular networks. The project focuses on solving practical use cases involving "semi ad-hoc networking" in HIP-OV based on IPv6.
- To optimise our solution in respect of throughput, power consumption and implementation complexity. A platform independent wireless adaptation layer from a previous IST project will be exploited.
- To extend the wireless adaptation framework to implement intelligent routing schemes on top of existing wireless network architectures.

Technical Approach

In the 6HOP project, the issues related to fully IPv6-based wireless networks that involve different standards and usage scenarios will be investigated. These include support for end users' mobility, packet routing and compensation for link quality variations.

Although 6HOP approach is native IPv6 based, it will be providing transition and interoperability mechanisms for IPv4 and other legacy networks. 6HOP intends to study WAL and PEP performance on multi-hop heterogeneous environment, where we are studying the end-to-end transparency and performance. The innovative aspect in the 6HOP project is also that we are going to use also IPv4. Moreover, we are interested in to study, if the WAL/PEP concept could be used to provide "home" for transition mechanisms from IPv4 to IPv6, that is could we implement e.g. NAT-PT, brokering and tunneling methods as WAL/PEP modules.

The goal of the project is trying to study and implement PEP concepts to be used in future heterogeneous 4G networking environment. We do this by taking into account not only theoretical protocol boosting and booster issues but also considering a real practical implementation problems (and requirements of terminals) as boundary conditions.

Innovation

One of the key objectives and innovations in the 6HOP project is to study further recently published generic protocol booster environment called Wireless Adaptation Layer (WAL). This WAL mechanism is a generalized Protocol Booster and Protocol Enhancement Proxy (PEP) mechanism that can be transparently used either as an heavy duty PEP type proxy/booster in the access points and base stations, but also as a light-weight "virtual" layer in terminal equipment. 6HOP intends to use, evaluate and further develop WAL so that it can be used for heterogeneous IP networking, and can be leveraged to provide support for multi-hop wireless networking (but in the limited context of "small number" (circa 6) of hops).

The objective is to provide and study the overall WAL architecture, to produce and enhance WAL code family (including proxies and more light-weight implementations) and a suitable number of protocol booster modules (that is booster modules such as Snopp, ROHC, and FEC that are used through WAL). The above is done in order to evaluate PEP concept in the heterogeneous multihop environment. The consortium leverages the industrial partners access to actual hardware and software of the different access point and terminal technologies. The WAL concept will be developed up to point where it can be introduced (backed with actual trials, measurements and experimentation) to standardization bodies and academic community, but most importantly we aim at to provide initial reference code that could be used in future to enhance actual products.

Figure: One possible 6HOP scenario
IPV6 Internet Initiative

Abstract

The objective of the 6INIT project is to prove the business case for Euro IPv6 by defining implementation and set-up procedures for European IP Networks to offer production IPv6-based Internet services.

The primary areas addressed within this project will be:
- Set up telephony and videophony services and access to video-on-demand services.
- Implement IPv6 applications (Stock Exchange, Remote Newspaper printing).
- Initiate the implementation of IPv6 Internet Service Provider.

Objectives

The objective of the 6INIT project is to validate the introduction of the NEW INTERNET in Europe based on the new Internet Protocol version 6 (IPv6), which offers a solution for current problems in space address limitation, quality of service, mobility and security.

The 6INIT project will lead to the set-up of a first European operational platform providing customers with native IPv6 access points and native IPv6 services. 6INIT is a coordinated initiative of the major European Telecom companies, equipment manufacturers, solutions/software providers and research labs that will lead to provide production IPv6 transit service to facilitate high quality, high performance, and operationally robust and secure IPv6 networks in view of wider deployment of European E-commerce and convergence.

Technical Approach

The primary works of the 6INIT project will be:
- Deploy an operational Trans-European IPv6 packet delivery service.
- Provide a set of multimedia services including IP telephony and videophony, multimedia web services.
- Develop operational procedures for IPv6 networks and for IPv4 to IPv6 network and application migration.
- Promote early IPv6-ready application testing and deployment.
- Develop Access Devices which allow seamless IPv4-IPv6 transition, differentiated services and VPN services.

Key Issues

The key issues addressed in this project are:
- Definition of fixed network architecture for next generation networks to provision seamless IP services with security and QoS.
- Integration of IPv6 protocol suites to next generation networks.
- Assess the technology that allows the rapid deployment of services and protocols for chosen architecture and application.
- Implement a test-bed with available and prototype products to demonstrate the technologies with selected applications and validate the exploitability of new technologies.
- Bring awareness of these new technologies and applications, and their possible impact on the user community.

Expected Impact

The expected result should be the validation of the New Internet based on IPv6, demonstrating the crucial benefits of the IPv6 features including quality of service (QoS) and Security.
The 6LINK project aims to unite IPv6 projects across the IST programme and beyond. It seeks to identify IST projects that have an interest in IPv6, including projects that may not mention IPv6 specifically in their definitions, and to bring representatives from identified projects together in a series of workshops. These workshops will serve to foster a common view of the status of IPv6 development and deployment in Europe and elsewhere, and will permit the identification of the most important issues for IPv6 deployment in Europe.

The project seeks to identify common issues and promote shared understanding amongst all participants, and to disseminate this work to as wide an audience as possible. Dissemination vehicles will include an annual publication of reports compiled by members of the 6LINK consortium. In addition, the 6LINK project will establish an IPv6 resource centre which will serve as a repository for the outputs of 6LINK as well as providing an important source of up-to-date and detailed information about IPv6-enabled applications and IPv6 standards.

Objectives

The 6LINK project has three objectives. These are consensus-building, dissemination and exploitation. The European Commission is actively sponsoring a number of IPv6-related IST projects, and there are other bodies, for example Eurescom, that fund IPv6-related collaborative work. It is the objective of 6LINK to bring representatives of these projects together to identify common experiences and to share knowledge and understanding of the status-of-the-art with regards to IPv6 development and deployment in Europe. The second objective, dissemination, builds upon the consensus and understanding generated by the first objective and seeks to promote the agreements and analyses arrived at by the partners to as wide an audience as possible. The third objective is concerned with capitalising on the synergies developed through achievement of the first objective, by providing support to participants developing inputs to standards bodies, and by presenting 6LINK participants’ submissions at standards meetings. The intention is to bring focus and clarity to the development and deployment of IPv6 in Europe, and beyond, in the hope that this will facilitate widespread adoption of the Internet Protocol version 6 (IPv6) protocol, and thereby give European industry and society an important advantage in the global information society.

In order to achieve the objectives set out above, the 6LINK project will adopt a workplan with elements to address the key areas of consensus-building, dissemination and exploitation. The core of the consensus-building work will be a series of workshops, held every four months throughout the project, at which partners will present and discuss the latest developments, both within the represented projects, and from the global IPv6 community. A global perspective will be achieved by including standards development reports as regular inputs to these workshops. As well as identifying commonalities of interest and important issues for IPv6 development and deployment in Europe, the workshops will agree specific subjects for written reports. These reports will be reviewed and agreed at subsequent workshops and will serve to bring focus and clarity to the subject of IPv6 development and deployment in Europe.

In tandem with the workshops, the project will establish an online resource centre which will provide public access to 6LINK reports, IPv6-related IST news and developments, and will host a database of IPv6-enabled applications. This online resource centre will partly meet the objective of disseminating the work of 6LINK to as wide an audience as possible. To further the achievement of this objective, the project will publish books of these reports on an annual basis. The form of this publication is to be decided, but may take the form of the Lecture Notes in Computing Science.

In order to best achieve the third objective, exploitation, the 6LINK project will seek to identify opportunities for common trials across projects, to draw further benefit from the work being done in IST projects, and to build on contacts and partnerships forged at 6LINK workshops. 6LINK will monitor standards development activities being undertaken as part of represented projects and will provide services to these projects in the form of presentations at standards meetings, document review and editorial support. The 6LINK project will serve to coordinate inputs to standards bodies from all of the represented projects and will take an active role in promoting the standards development work of 6LINK participants at standards meetings, provided that there is no contravention of the rules governing participation in the standards body in question by so doing.

Expected Outcomes and Results

It is expected that 6LINK will foster an improved understanding throughout the IST community of the most important issues for IPv6 development and deployment. 6LINK will publish 3 books on the subjects deemed most important by the participants in 6LINK workshops. 6LINK will also serve to heighten awareness of the status of IPv6-related standards development, and will help to promote the standards work of participant organisations within the relevant standards bodies.

Innovation

The 6LINK project provides the first, and only, forum for IPv6-related IST projects to come together and discuss important issues. Prior to the 6LINK project, collaboration and discussion between projects took place informally. 6LINK provides a formal, funded framework for such collaboration, and sets clear objectives for the participants in terms of deliverables. 6LINK will serve to identify and document the important issues for IPv6 development and deployment in Europe. 6LINK provides the first forum for dissemination of developments in the commercial, academic and standards arenas that is focused exclusively on IPv6 technologies.
Large-scale International IPv6 Pilot Network

Abstract

6NET is Europe's largest Internet research project, and aims to deploy and test IPv6 under realistic conditions. The 35 project partners represent a rich combination of research and industrial organizations. The consortium will provide a native IPv6 network on an international scale, throughout Europe, and to North America and the Asia-Pacific region, for test and demonstration purposes. The 6NET infrastructure will connect more countries at a higher capacity than any other native IPv6 network deployed to date, initially spanning nine European countries, with lines of up to 2.5 Gb/s.

Objectives

The main goals of the project are to:
- Build and operate a dedicated International IPv6 network, and use this network to validate that the demands for the continuous growth of the global Internet can be met with the new IPv6 technology.
- Help European research and industry to play a leading role in defining the next generation of networking and application technologies that go beyond the current state of the art.

Sub-objectives are to:
- Provide and operate a combined fixed/mobile IPv6 pilot network, in order to gain a better understanding of IPv6 deployment issues, including physical infrastructure, address allocation, registries, routing and DNS operation.
- Operate an international pilot service such that geographically dispersed groups can interwork using native IPv6 facilities.
- Study, implement and validate IPv6/IPv4 coexistence, migration techniques and transition tools.
- Test state of the art IPv6 applications and access to legacy IPv4 applications and content.
- Exploit the synergy between IPv6 research and application technologies.

The 6NET infrastructure will initially be based on a central core of European cities and be gradually extended within Europe and to North America and the Asia-Pacific region. The extension within Europe entails not only the linking of new core locations, but also the provisioning of IPv6 within the existing networks, and into many University campus environments. Each phase of this growth will be associated with new network operation and management features, and tests of interoperability.

Similarly, new network services (IPv6 DNS, IPv6 multicast, IPv6 mobility, IPv6-only wireless LAN access, VPN, etc.) and transition strategies/tools will be integrated and tested as they are developed. In parallel with all these activities, management tools will be selected developed in the project and integrated into the network operation procedures.

Finally, the experimentation with applications will begin with IPv6 applications in common use (mail, web, vic, vat, etc.) and lead up to advanced experiments with state of the art IPv6 applications.

Technical Approach

Find a stable, European infrastructure will rapidly be put in place, and supporting network features will be developed in order that sophisticated applications (that take advantage of IPv6 capabilities) can be validated and demonstrated. Once the pan-European network is operational, the 6NET pilot network will be extended to link also North America and the Asia-Pacific region. In parallel with all these activities, management tools will be selected developed in the project and integrated into the network operation procedures.

The work therefore follows an approach that allows for the incremental integration of new connectivity, network services, applications and management tools into the test-bed. The main items of technical work are focused in these 3 broad areas: infrastructure, network services, and application trials. Work in each of these areas follows a cycle of increasing functionality.

The IPv6 infrastructure will initially be based on a central core of European cities and be gradually extended within Europe and to North America and the Asia-Pacific region. The extension within Europe entails not only the linking of new core locations, but also the provisioning of IPv6 within the existing networks, and into many University campus environments. Each phase of this growth will be associated with new network operation and management features, and tests of interoperability.

Further achievements will include a study, implementation and validation of IPv6/4 coexistence, migration techniques and transition tools.

The main expected result is the provision and operation of a large-scale (intercontinental) combined fixed/mobile IPv6 pilot network, with the associated management functionality. This will bring a better understanding of IPv6 deployment issues, such as the physical infrastructure, and network service issues such as address allocation, registries, routing and DNS operation.

Further achievements will include a study, implementation and validation of IPv6/4 coexistence, migration techniques and transition tools.

The practical experience gained in deploying emerging technologies in realistic settings will help European research and industry to play a leading role in defining the next generation of networking and application technologies.

Innovation

The innovation of this project extends from the many service support development activities, through to the building and operation (including management) of the network, so that it can be used for the application trials. For example:
- Support for class-of-service (in the form of a "Traffic Class" field compliant with the IETF Diffserv model).
- IPv6:
 - The development and testing of network services such as DNS, multicast/multihoming, etc.
 - The design, implementation and test of both inter-domain and inter-domain IPv6 multicast. Interoperability between IPv6 multicast will be examined too.
 - Interoperability between IPv6 network services and IPv4 network services.
 - Mobility (wireless-only LARF, in an end-to-end environment, ranging from B2G 12s, Bluetooth and B3G 31s, through to the convergence of mobile and fixed network technologies).
 - New applications that will stress the network and be used to evaluate the benefits and end users that IPv6 can bring, through the expanded IP addresses, integrated auto-configuration, quality-of-service (QoS), mobility and security.

Key words:
- International pilot network IPv6
- Network services Applications
- Collaboration with other EC funded projects:
 - GÉANT
 - Euro-IX
 - 6LINK
 - WINITE
 - Euro6IX
 - GARR
 - INRIA
 - 6LINK
 - WINITE
 - Euro6IX
 - GARR
 - INRIA
 - 6LINK
 - WINITE
 - Euro6IX
 - GARR
 - INRIA
 - 6LINK
 - WINITE
 - Euro6IX
 - GARR
 - INRIA
 - 6LINK
 - WINITE
 - Euro6IX
 - GARR
 - INRIA
 - 6LINK
 - WINITE
 - Euro6IX
IPV6, QoS & Power Line Integration

Abstract

The main goal of the project is to contribute to ensuring affordable broadband access and deployment of IPv6 in Europe, as stated in the conclusion of the Presidency of the Barcelona European Summit.

In order to achieve this goal, the project will research the native support and deployment of IPv6, QoS and other advanced services over Power Line Communication networks.

Objectives:

- Research native IPV6 IPv4 and related protocols or advanced network services (QoS, security, multicast, mobility and so on) support over broadband Power Line in several platform/equipment, including the necessary standardization activities mainly on the IETF, but not limited to.
- Adaptation of several next generation applications and services required for a correct evaluation of this technology and the actual support of the advanced network services, including VoPM, multi-conference and audio/video streaming.
- Field Trial and Evaluation of several devices, services and network prototypes, interconnected with other major IPV6 network trials, like Euro6IX and GNET.
- Other key features of this project with respect to other projects that may be related in any way to PLC, IPV6 or QoS (among other advanced services) are:
 - For the first time, a large-scale deployment of very high speed broadband PLC will be performed in Europe. Currently deployed technologies in Germany and other European countries only provide data rates up to 2 Mbps and do not have QoS support. The PLC technology deployed in this project will provide up to 4 Mbps and will support QoS features to the upper layers (IPV6) through well-defined and standardized interfaces.
 - The project will provide the support for emerging technologies and will make possible their actual evaluation and assessment. These technologies, like VoIP, IPV6, and advanced "next generation" digital set-top-boxes, will have the right scenario to benchmark the next generation services as high-speed Internet TV, secure e-commerce, virtual shopping, information, and related applications.
 - The project will be active in dissemination and linkage activities, with other related projects and initiatives, including IPV6 Forum, 6Link, IPV6 Cluster, and other events related to IPV6, PLC and related technologies, in order to publicize the project results.

Technical Approach

In order to meet the objectives of the project, the following work packages have been defined:

- WP1: Coordination, Interconnection & Dissemination.
- WP2: Integration of IPV6 Advanced Services over PLC.
- WP3: IPV6 Network Architecture Design and Implementation.
- WP4: IPV6 Devices.
- WP5: Next Generation Applications.
- WP6: Field Trial and Evaluation.

WP5 and WP4 are closely related because WP5 is going to use very directly the PLC functionalities provided by WP4 low layers research.

In addition, WP3 and WP6 need also to be closely coupled as long as WP3 will design and implement a network using the equipment provided by WP6.

- WP3 will provide the network that will be used by the rest of the WP.
- WP6 will offer feedback to the different WP about the results of the trials. In order to be effective, WP6 will receive support for performing the trials from the other WPs, creating a bi-directional communications channel, finalizing with the evaluation process.

Expected Impact:

The expected impact of the project is to ensure affordable broadband access with PLC offering QoS and the deployment of IPV6 in Europe.
The project goals is the research, development and integration of the different pieces needed for the correct measurement of the Quality of Service in IPv6 networks.

In order to achieve this goal, a measurement device will be developed. This device will insert precise timestamp information when IPv6 packets are captured. A measurement server will be also developed. This server will collect the packets that had been timestamped by the measurement device and provide usage data and QoS metrics (delay, loss, jitter, and so on). All the developed components will be integrated, locally tested. Given the fact that the time frame of 6QM project, and the coincidence with two pan-European native IPv6 networks (Euro6IX and 6NET), they will be used as major test-beds to validate the 6QM project, in a pragmatic way.

The liaison and the cooperation between 6QM and these projects will lead to study the impact of the characteristics of these networks on the design of measurement tools (probes) and on the specification of the measures (metrics, collection techniques, processing methods…).

As part of the expected result from 6QM project, a knowledge base and a set of guidelines will be created, that could be exploited by operators and ISPs to meet the client demand in IPv6 advanced services with guaranteed and differentiated QoS. Extensive dissemination and linkage with other related Foras and Projects will be carried out, and will permit to progress in the standardization, in order to solve some remaining R&D issue and publicize the project results.

The project Work Plan has been structured in the following set of Work Packages:

- WP1 (Management and Coordination).
- WP2 (Requirement Study for IPv6 QoS Measurement) as a pre-requisite for achieving the project objectives in real large-scale scenarios, and outputs for guidelines.
- WP3 (Development of IPv6 Measurement Technology) to address the development of the measurement device and server, and generation of final guidelines.
- WP4 (System Integration, Testing and Evaluation).
- WP5 (Generation of a set of guidelines for the possible application and further research of IPv6 Operations Support System (OSS).

Innovation

The number of experimental projects for IPv6 networks is radically increasing with worldwide scale. These projects have been proving the effectiveness of the IPv6 protocol. Moreover, several kinds of applications using IPv6 network have been proposed, and major applications using IPv6 network are video conferencing and games on the net, using real-time and peer-to-peer communication. These applications require high throughput, low delay and less data loss. Therefore, the guarantee of QoS will be quite important issue for IPv6 Operations Support System (OSS).

By relating the measured data and network configuration, the network manager can identify the specific network device that should be intensively monitored to solve network problems. By relating the data from configuration system with the data from IP measurement server, the basic information for identifying the rest of network capacity can be expected. Based on this information, the configuration system can find the best route for establishing new end-to-end path. Moreover, based on this data, the network operator can forecast the time when the network capacity should be increased. The major applications of IPv6 networks will require the QoS to each end-to-end path.

Therefore, to complete technologies for QoS guaranteeing network operation and management, not only the QoS control technique but also the measurement technologies for IPv6 should be developed.
The 6WINIT project is intended to validate the introduction of the NEW MOBILE WIRELESS INTERNET in Europe based on a combination of new Internet Protocol version 6 (IPv6) and wireless protocols (GPRS and UMTS/3GPP).

The 6WINIT project is intended to validate the introduction of the NEW MOBILE WIRELESS INTERNET in Europe based on a combination of new Internet Protocol version 6 (IPv6) and wireless protocols (GPRS and UMTS/3GPP).

The project concentrates on mobile and wireless aspects of the system it links into existing IPv6-wired infrastructure, using mainly existing applications for the validation, with emphasis on the clinical, multimedia and home control applications. In most cases the applications themselves are not being developed inside the project.

Objectives:

• Validate the introduction of the NEW MOBILE WIRELESS INTERNET in Europe – based on a combination of the new Internet Protocol version 6 (IPv6) and the new wireless protocols (GPRS and UMTS/3GPP).

• Validate the integration of the protocol suites in (1) into real applications by running complete application test-beds.

• Ensure that the implementations of (1) are generic, and not specific to a particular supplier or operator.

• Ensure that the validation applications of (2) are not too tied to specific choice of applications.

• Ensure that the international perspective is maintained.

Amongst the activities that must be pursued are the following:

• An Architecture that is viable allowing for transition from IPv4 to IPv6 (WP3).

• Non-clinical applications which largely existed outside the project, but must be ported to work in an IPv6 environment (WP4).

• Clinical applications which were designed to work in a conventional, wired, local IPv4 environment – but which have to be completely re-examined for the mobile IPv6 environment. Because these are major applications with live patients, it is not feasible to completely re-engineer them. Instead it is necessary to adopt front-end and agent techniques to mitigate the need for change in the applications themselves (WP5).

• Ensuring that the relevant relays, routers and gateways can operate in the mobile IPv6 environment (WP6).

• Providing any additional components needed to deploy the applications from WP4 and WP5. This includes providing host support, security infrastructure, mobile infrastructure and enabling tools like IPv6-enabled Java (WP7).

• Ensuring the availability of the requisite IPv6-enabled wireless network and wired resources to be available in the partner and demonstration network (WP8).

• Providing the appropriate enhancements of the clinical applications of WP5 to ensure that they can be demonstrated over the wireless IPv6 environment (WP9).

• An evaluation both of what has been demonstrated, what should be extended in the future, and what can be expected to occur in the near future (WP9).

Technology, Components and Test-bed

The infrastructure of 6WINIT consists of IPv6-enabled communications facilities include Wireless LANs, GPRS and a UMTS test-bed attached to an IPv6 wired infrastructure derived from GNT and NREN pilots. To make use of this test-bed, considerable work is being done on:

• Routers: Here dual-stack routers, with support for Mobile IPv6, Real Warrior functionality (via IPsec/IK2) and multicast.

• Relays: Both to provide media adaptation via active network technology and SIP/H.323 transformation at the network edge.

• Hand-holds: Here we are ensuring IPv6 and mobile support both in standard terminals like laptops, servers and really portable devices such as PDA's.

• Technologies: Here we ensure that the requisite components are available under IPv6 such as RTP, IPsec, Location information, Mobile IP and Java.

• Providing the appropriate enhancements of the clinical applications of WP5 to ensure that they can be demonstrated over the wireless IPv6 environment (WP9).

• An evaluation both of what has been demonstrated, what should be extended in the future, and what can be expected to occur in the near future (WP9).

Applications

6WINIT offers advanced network services, and a repository of IPv6-enabled applications, which have been ported, adapted or enhanced, and made available for trials both within 6WINIT and to third parties. While some of these applications were developed inside the project, most were provided from other projects – but adapted to the Mobile IPv6 environment.

Amongst the non-clinical applications are media conferencing, media streaming and home appliance control. Amongst the clinical applications are counselling and vital statistics in accident and emergency, access to clinical data from patients' homes and on-line education.
The goal of the Euro6IX project is to support the rapid introduction of IPv6 in Europe. Towards this target, the project has defined a work plan. This describes the network design, network deployment, research on advanced network services, development of applications (that will be validated through the involvement of user groups and international trials), and active dissemination activities, including events and conferences, contributions to standards (IETF among others), publication of papers and active promotion of all the publicly available project results through the project web site.

The project will research, design and deploy a native pan-European IPv6 network, called the Euro6IX test bed. It will include the most advanced services obtainable from present technology and will follow the architecture of the current Internet (based on IPv4). It will consider all the levels needed for the worldwide deployment of the next generation Internet.

Objectives:
- Research an appropriate architecture to design and deploy the first pan-European non-commercial IPv6 Internet Exchange (IX) Network. It will connect several regional neutral IPv6 Internet Exchange points across Europe, and achieve the same level of robustness and service quality as currently offered by IPv4 Internet Exchange Networks.
- Use the deployed IPv6 IX (infrastructure to research, test and validate IPv6-based applications and services.
- Open the Euro6IX network to specific user groups (existing and to be created), who will be connecting to the Euro6IX network by means of a variety of access technologies – mobile, xDSL, cable – and internetworking with legacy IPv4 networks and services, to test the performance of future IPv6 networks, and non-commercial native IPv6 advanced services and applications.
- Disseminate, liaise and coordinate with clusters, fora, standards organizations (e.g. the IETF and RFC) and third parties, with particular consideration for interworking and coordination with peer projects.

Technological Approach

The success of the Euro6IX project will be measured against the achievement level of:
- Good management of project activities to meet the milestones according to agreed plans, on top of the rest of the activities (WP1).
- Procurement of IXs according to defined specifications, deployment and provision of efficient interconnectivity for the IPv6 European level Internet (designed by WP2, and deployed by WP6).
- Involvement of research entities and non-commercial trial users in order to use this network, advanced services and applications (developed by WP4).
- Promotion of the IPv6 interests by ISPs and users through test and trials (WP5 and carried out by WP6).
- Creation of awareness with Euro6IX activities at events of IST, IETF, fora, summits and national events with targeted participants (WP5).

Test-bed

The infrastructure of Euro6IX will consist of the following different network levels:
- IX-level: Regional native IPv6 exchanges.
- Backbone-level: Pan-European core network that interconnects the regional exchanges, and creates the highest level in the network hierarchy.
- Node-level: Service providers, ISPs and other providers accessing the core network to provide IPv6 services and end user access. The users will be connected by means of a variety of access technologies, including legacy IPv4 networks and services whenever no IPv6 native links are available or feasible. This level includes a set of academic, research and non-commercial trial users who will use native IPv6 services, and generate IPv6 native traffic.

Applications

Euro6IX will offer advanced network services, and a repository of IPv6 enabled applications, which have been ported, adapted or enhanced, and made available for trials both within Euro6IX and to third parties.

Emphasis will be put on tools that use the advanced features of IPv6 such as:
- Code porting (include Java),
- Address Delegation V6CID Tools,
- Instant Messaging,
- VBI6 Mail Tools,
- Multimedia,
- Shareware Repository,
- Test Suites,
- On-Line Education Tools,
- Billing Tools Prototypes.

Innovation

In order to allow for the continuous growth of the Internet, it is necessary to provide a neutral IPv6 based test exchange facility for researchers and ISPs to connect to and test the network, performances, its reliability and scalability to determine if large scale networks can be established, solving interoperability and QoS issues. This is the key purpose of the Euro6IX project. Euro6IX will:
- Provide efficient interconnectivity for the IPv6 European networks.
- Involve the research community and non-commercial trial users on the network, with advanced services and applications.
- Promote the interests of ISP and users for IPv6 development.
- Create awareness through demonstration of project results among the targeted recipients (IETF, REN, fixed and mobile operators, Summit, etc.).
The European IPv6 Showcase

Abstract

The Eurov6 project is in line with the current policy of the European Commission, which has recognized the growing importance of IPv6 and has made it a policy to adopt IPv6 for next-generation networks. Eurov6 will build an IPv6 applications and services showcase by bringing together devices and systems vendors as sponsors. The Eurov6 will act as a catalyst; it will let different interests converge, from users, vendors, operators, ISPs, researchers, universities, IST networks and applications projects.

Objectives

The principal objective of the Eurov6 project is to show the usage of IPv6 products and services and their impact to anyone at anytime. For this purpose, the following actions have to be performed:

- Bringing together vendors as sponsors to test and demonstrate their devices and systems.
- Showing various users applications based on IPv6 products and services, permanently at a few locations in Europe ("Fixed showcase"), which can be visited physically or accessed remotely through telematic means.
- Organizing temporary demonstrations at different locations and/or significant events ("Nomadic Showcase" - concept of "Nomadic Showcase").

The Eurov6 Showcase will obtain sponsoring of organizations who have the commercial and technical prototype networking components, devices and applications for building a Showcase. In order to show the users all functionalities, features and benefits, in such a way that entrepreneurs identify major investment potentialities to reap the benefits and also to contribute towards developing a healthy information society.

- The Eurov6 project, with its permanent test-bed/demonstration centers in Basel, Brussels and Madrid, interconnected to other IPv6 initiatives, and experiments through GÉANT, EuroIX, 6NET and other national networks will allow the user community to experiment and trial their new applications, network and protocol features to all interested parties and entrepreneurs.
- Identify the locations of a few permanent showrooms, where the demonstrations are generally available round the year and special demos targeted to particular types of visitors that can be arranged at short notice. Obvious candidates are Brussels and Basel, which constitute the 6NET-LAB infrastructure as well as Madrid because of the involvement of CONSULTEL in EuroIX.
- Get the sponsoring of connectivity, devices, systems and services, applications from the vendors and ISPs for integrating the system.
- Build a prototype demo system and maintain it, including packaging and documentation.
- Build a plan to illustrate different aspects of IPv6 remotely from some networked centers around Europe and help the local personnel of different centers to develop their own user manuals.
- Plan to take the demos to different events (including NTBDCP) and other international exhibitions.
- Provide a live IPv6 internet environment in such events with active participation in these events.
- Define appropriate information dissemination and public relations policy, as well as relations with the press and the media, and conduct the corresponding activities.
- Establish a project web site, which will describe the package and its availability list the forthcoming information dissemination events and report about the previous ones.
- Include the sponsors in the web site, in order to reward their contribution and increase their participation.

Key Words

In summary Eurov6 will contribute to the IST Program Objectives in many ways:

- Providing a technology showcase that illustrates the actual and rapid deployment of the IPv6 based services and applications, allowing assessing, validating and improving architectures and protocols.
- Providing a platform where users can explore and experience the benefits of IPv6 networked systems.
- Allowing users to see how IPv6 technology with its rich features can make a substantial impact by aggregating critical mass ahead of market maturity.
- Allowing users to try out and trial their new applications, network and protocol features to all interested parties and entrepreneurs.
- Enabling users to trial their new applications and services to validate their exploitability for commercial success.
- Providing incentives for increasing the user demand for the services, and the supply ability to meet the demands.

Expected Impact

The main result expected from the Eurov6 project is the stimulation and promotion of the dissemination of IST research activities and innovations, helping the mainstreaming of the exploitation of results and their socio-economic and policy implications.

- Identified the locations of a few permanent showrooms, where the demonstrations are generally available round the year and special demos targeted to particular types of visitors that can be arranged at short notice. Obvious candidates are Brussels and Basel, which constitute the 6NET-LAB infrastructure as well as Madrid because of the involvement of CONSULTEL in EuroIX.
- Get the sponsoring of connectivity, devices, systems and services, applications from the vendors and ISPs for integrating the system.
- Build a prototype demo system and maintain it, including packaging and documentation.
- Build a plan to illustrate different aspects of IPv6 remotely from some networked centers around Europe and help the local personnel of different centers to develop their own user manuals.
- Plan to take the demos to different events (including NTBDCP) and other international exhibitions.
- Provide a live IPv6 internet environment in such events with active participation in these events.
- Define appropriate information dissemination and public relations policy, as well as relations with the press and the media, and conduct the corresponding activities.
- Establish a project web site, which will describe the package and its availability list the forthcoming information dissemination events and report about the previous ones.
- Include the sponsors in the web site, in order to reward their contribution and increase their participation.

Key Words

In summary Eurov6 will contribute to the IST Program Objectives in many ways:

- Providing a technology showcase that illustrates the actual and rapid deployment of the IPv6 based services and applications, allowing assessing, validating and improving architectures and protocols.
- Providing a platform where users can explore and experience the benefits of IPv6 networked systems.
- Allowing users to see how IPv6 technology with its rich features can make a substantial impact by aggregating critical mass ahead of market maturity.
- Allowing users to try out and trial their new applications, network and protocol features to all interested parties and entrepreneurs.
- Enabling users to trial their new applications and services to validate their exploitability for commercial success.
- Providing incentives for increasing the user demand for the services, and the supply ability to meet the demands.

Expected Impact

The main result expected from the Eurov6 project is the stimulation and promotion of the dissemination of IST research activities and innovations, helping the mainstreaming of the exploitation of results and their socio-economic and policy implications.

- Identified the locations of a few permanent showrooms, where the demonstrations are generally available round the year and special demos targeted to particular types of visitors that can be arranged at short notice. Obvious candidates are Brussels and Basel, which constitute the 6NET-LAB infrastructure as well as Madrid because of the involvement of CONSULTEL in EuroIX.
- Get the sponsoring of connectivity, devices, systems and services, applications from the vendors and ISPs for integrating the system.
- Build a prototype demo system and maintain it, including packaging and documentation.
- Build a plan to illustrate different aspects of IPv6 remotely from some networked centers around Europe and help the local personnel of different centers to develop their own user manuals.
- Plan to take the demos to different events (including NTBDCP) and other international exhibitions.
- Provide a live IPv6 internet environment in such events with active participation in these events.
- Define appropriate information dissemination and public relations policy, as well as relations with the press and the media, and conduct the corresponding activities.
- Establish a project web site, which will describe the package and its availability list the forthcoming information dissemination events and report about the previous ones.
- Include the sponsors in the web site, in order to reward their contribution and increase their participation.

Key Words

In summary Eurov6 will contribute to the IST Program Objectives in many ways:

- Providing a technology showcase that illustrates the actual and rapid deployment of the IPv6 based services and applications, allowing assessing, validating and improving architectures and protocols.
- Providing a platform where users can explore and experience the benefits of IPv6 networked systems.
- Allowing users to see how IPv6 technology with its rich features can make a substantial impact by aggregating critical mass ahead of market maturity.
- Allowing users to try out and trial their new applications, network and protocol features to all interested parties and entrepreneurs.
- Enabling users to trial their new applications and services to validate their exploitability for commercial success.
- Providing incentives for increasing the user demand for the services, and the supply ability to meet the demands.

Expected Impact

The main result expected from the Eurov6 project is the stimulation and promotion of the dissemination of IST research activities and innovations, helping the mainstreaming of the exploitation of results and their socio-economic and policy implications.

- Identified the locations of a few permanent showrooms, where the demonstrations are generally available round the year and special demos targeted to particular types of visitors that can be arranged at short notice. Obvious candidates are Brussels and Basel, which constitute the 6NET-LAB infrastructure as well as Madrid because of the involvement of CONSULTEL in EuroIX.
- Get the sponsoring of connectivity, devices, systems and services, applications from the vendors and ISPs for integrating the system.
- Build a prototype demo system and maintain it, including packaging and documentation.
- Build a plan to illustrate different aspects of IPv6 remotely from some networked centers around Europe and help the local personnel of different centers to develop their own user manuals.
- Plan to take the demos to different events (including NTBDCP) and other international exhibitions.
- Provide a live IPv6 internet environment in such events with active participation in these events.
- Define appropriate information dissemination and public relations policy, as well as relations with the press and the media, and conduct the corresponding activities.
- Establish a project web site, which will describe the package and its availability list the forthcoming information dissemination events and report about the previous ones.
- Include the sponsors in the web site, in order to reward their contribution and increase their participation.
Global Communication Architecture & Protocols for new QoS services over IPv6 networks

Abstract

High performance networking with guaranteed Quality of Service is one of the major challenges of the next decade. It mandates very important efforts to provide multimedia and multicast communications to wide area advanced users, because the limited mechanisms of UDP and TCP cannot adequately support innovative distributed applications. Furthermore, future architectures will involve heterogeneous networks, as new satellite and terrestrial networks having differentiated services. As a consequence, GCAP aims at developing for the future Internet two new end-to-end multicast and multimedia transport protocols, embedded in a new global architecture to provide a guaranteed QoS to advanced Multimedia MultiPeer MultiNetwork applications. In order to rapidly experiment the proposed solutions, an efficient deployment of the communication software will be developed over an industrial IPv6 layer by using a programmable active network based technology.

Objectives

• Define and evaluate a new end-to-end multicast transport protocol and a new end-to-end multimedia multicast transport protocol for supporting dedicated or specialised applications having guaranteed QoS requirements.
• Define and evaluate a new integrated global multi-network end-to-end architecture for supporting multimedia and cooperative applications needing guaranteed Quality of Service.
• Propose a design approach to rapidly deploy and use such new protocols, that will be developed on top of the new QoS architecture based on IPv6, by means of an active network based technology.
• Illustrate the feasibility and evaluate the potential of the advocated approach by conducting two experiments using the national research networks and their European interconnection.

Applications

The last technical workpackage devoted to the demonstration and to the evaluation of the approach consists of four Tasks.
• The first one will define the global experimental hardware and software environment. In particular, it will make precise the hardware and software involved, the different IPv6 supports, both in edge-devices and in network-devices, the precise platform in the different sites, and the measurement software to be used.
• The two following tasks will be related to the specification and to the design of the two illustrative experiments.
 - One will be devoted to multicast through the design of a distributed service, seen as a building block, providing a multicast dynamic group communication.
 - The other will be devoted to the implementation of a peer multimedia server across a multimedia multi-QoS transport layer. These two experiments will be implemented to integrate the application software, the transport layer, the active network environment and the IPv6 network support.
• The last Task of the WP will have as a purpose, during the last three months, to analyse the demonstrations and capture the main lessons to be gained from GCAP.

Technical Approach

GCAP project has defined the following Workpackages to achieve the targeted objectives:
• QoS and Layering (WP1).
• Definition and Specification of the Protocols (WP2) and deployed by:
 - Protocol Implementation & Deployment (WP3).
 - Application Experiments (WP4).
• Management, Dissemination and Assessment (WP5).

GCAP Architecture

To design and implement a new Transport layer for the Internet next generation, the work conducted in GCAP addresses the following items:
• Specify and implement two protocols, designed as two building blocks, a multimedia protocol and a multicast protocol.
• The multimedia protocol allows the management of groups of users, and provides the mechanisms needed to guarantee the selected QoS parameters to receivers.
• The multimedia multicast protocol allows the application user to select the multimedia reliability and multimedia synchronisation to be enforced by the layer.
• Select an active network approach to be able to run the two previous protocols written in six IPv6 environments. The aim is to produce a software environment that will be able to support the automatic remote loading and the automatic remote execution of these two protocols for deployment.
• Integrate these results into a new advanced end-to-end multicast network transport layer.
• Evaluate and analyse the results obtained: the protocols themselves and their mechanisms, the active support environment including code design and execution, and the large scale deployment and behaviour.

Innovation

GCAP is a research project needed for designing the new generation Internet; its quite advanced objectives consider together and integrate a new architecture, two new protocols with QoS guarantee, over the most advanced deployment architecture. Its purpose is to give to the users/providers as much flexibility as possible. The goal of GCAP being to integrate the design of advanced QoS protocols together with the design of their deployment on top of active network, it appears that, to our knowledge, no other project is tackling this advanced problem.

| Project name: GCAP
| Global Communication Architecture & Protocols for new QoS services over IPv6 networks
| Contract no.: IST-1999-10504
| Start date: 01/01/2000
| Duration: 24 months
| Total budget: 3.428.009 €
| Funding from the EC: 1.945.434 €
| Total effort in person-months: 300
| Website: http://www.laas.fr/gcap
| Contact person: Michel Diaz
| E-mail: diaz@laas.fr
| Tel.: +33561336256
| Fax: +33561336411
| Project participants:
 01. LAAS-CNRS
 02. INRIA
 03. 6WIND
 04. DIACOM
 05. ENSICAF
 06. UC3M
 07. UC3ME
 08. ASPIF
 09. U. Karslruhe
 10. ENSICAF
 11. CTUCZ
 12. LAAS-CNRS

Key words:
Active Networks
Internet Protocols
IPv6
Quality of Service

Collaboration with other EC funded projects:
QDMT

Abstract

GCAP project has defined the following Workpackages to achieve the targeted objectives:
• QoS and Layering (WP1).
• Definition and Specification of the Protocols (WP2) and deployed by:
 - Protocol Implementation & Deployment (WP3).
 - Application Experiments (WP4).
• Management, Dissemination and Assessment (WP5).

GCAP Architecture

To design and implement a new Transport layer for the Internet next generation, the work conducted in GCAP addresses the following items:
• Specify and implement two protocols, designed as two building blocks, a multimedia protocol and a multicast protocol.
• The multimedia protocol allows the management of groups of users, and provides the mechanisms needed to guarantee the selected QoS parameters to receivers.
• The multimedia multicast protocol allows the application user to select the multimedia reliability and multimedia synchronisation to be enforced by the layer.
• Select an active network approach to be able to run the two previous protocols written in six IPv6 environments. The aim is to produce a software environment that will be able to support the automatic remote loading and the automatic remote execution of these two protocols for deployment.
• Integrate these results into a new advanced end-to-end multicast network transport layer.
• Evaluate and analyse the results obtained: the protocols themselves and their mechanisms, the active support environment including code design and execution, and the large scale deployment and behaviour.

Innovation

GCAP is a research project needed for designing the new generation Internet; its quite advanced objectives consider together and integrate a new architecture, two new protocols with QoS guarantee, over the most advanced deployment architecture. Its purpose is to give to the users/providers as much flexibility as possible. The goal of GCAP being to integrate the design of advanced QoS protocols together with the design of their deployment on top of active network, it appears that, to our knowledge, no other project is tackling this advanced problem.
Abstract

The European Commission initiated an IPv6 Task Force driven by major and key European and worldwide players, to develop a comprehensive action plan by the end of 2003 aiming to ensure the timely availability of IPv6.

The conclusions and recommendations of the Task Force were successfully submitted to the European Council’s Berlaymont Spring meeting of 2002, under the Spanish Presidency, and in the context of this document, a series of recommendations pertaining to the implementation of IPv6 by all relevant ICT sectors were proposed by the Commission.

As a result, the Heads of State resolution was to prioritize the widespread availability and use of broadband networks throughout the Union by 2005 and the deployment of the New Internet Protocol IPv6.

One of the main achievements was a Communication from the Commission to the Council and the European Parliament called “Next Generation Internet - priorities for action in migrating to the new Internet Protocol IPv6”.

As a complementary action, the European Commission calls for the renewal of the mandate of the “IPv6 Task Force” as a platform for debate on critical issues concerning the deployment of IPv6.

Objectives

In order to exchange views with all economic and industrial sectors likely to be impacted by IPv6, including consumer organizations, research institutions, and independent data protection authorities as well as representatives of national or regional IPv6 Councils and appropriate representatives from candidate countries, the renewed mandate of the Task Force will encompass:

- Establish a working liaison with standards and Internet governance bodies such as IETF, IETF, IETF- RFC, ISO, ETSI, IPv6 Forum, Eurescom, ENTSO, UFM, and QMI Europe
- Provide a regularly updated review and plan action on the “The European IPv6 Roadmap” on the development and future perspective of IPv6 in order to coordinate European efforts on IPv6
- Establish collaboration arrangements and working relationships with similar initiatives being launched in other world regions

One of the main goals is to discover and fill gaps, provide strategic guidance with the assistance of a number of industry and academic players, to quickly propose measures to the appropriate bodies, to involve the European Commission and to verify sustained activities and implementation of proposed measures.

As a consequence, the nature of this project (IPv6 TF-SC) is to be the strategic instrument and create ground for discussion and monitor how the recommendations are transformed.

Besides, it will collaborate with other regional groups and initiatives deploying IPv6.

To assure the success of IPv6 deployment, the IPv6 TF-SC project, in its role as the facilitator of the Task Force, that is invited to create strategic Roadmaps, will continuously monitor the academic, market, and industrial activities, and provide guidance where appropriate to avoid duplication of work.

To this extend, the project will facilitate, support and coordinate the continuation of the work of the IPv6 Task Force, with the renewed mandate of a 2nd phase, with the means of a Steering Committee, consisting of IPv6 experts, to: the facilitation of the successful introduction of IPv6 in Europe and consequently, the rest of the world.

Technical Approach

In order to achieve the project objective, the following goals had been defined:

- To perform all required actions aiming at the enhanced coordination and continuation of the work performed within the IPv6 Task Force 2nd phase. The IPv6 TF-SC will set the Agenda and with the assistance of the Commission invite participation of representatives of not yet represented economic and industrial sectors likely to be impacted by IPv6, including representatives of national or regional IPv6 Councils and appropriate representatives from candidate countries.
- The IPv6 Task Force provide a regularly updated review and plan action on this development and future perspective of IPv6 in order to coordinate European efforts on IPv6. The IPv6 Task Force Steering Committee will monitor how the recommendations are implemented and remind those that need to take action where appropriate.
- Create the proper working and liaison environment to ensure that a working collaboration with standards and Internet governmental policy bodies takes place.
- Establish collaboration arrangements and working relationships with similar initiatives being launched in other world regions, industry and research.
- Organize regular IPv6 Task Force meetings (plenary and/or working groups) with the assistance of the Commission.
- Foster dissemination and awareness activities, regarding the IPv6 Task Force work, and other related efforts and initiatives, including the operation of the IPv6 Task Force and the project web sites.

Key issues

From the perspective of this project, and considering the previous recommendations submitted to the EC, taking into account that these are subject to change as a matter of decision of the IPv6 Task Force 2nd phase, the main goals of the IPv6 Task Force will be:

- Establish the industry and disseminate the information.
- Work out a Roadmap for deployment of IPv6 in different industry sectors with the help of applicable scenarios where appropriate.
- Promote the rollout of IPv6 products.
- Encourage national governments and institutions in Europe to accelerate the rollout of broadband, "always on" networking with IPv6.
- Encourage vendors to incorporate IPv6 support into their products.
- Encourage European car manufacturers to deploy and test IPv6.
- In view of the increasing deployment of IPv6 encourage the feasibility of dual stack SIP phones development.
- Encourage active contributions towards the acceleration and alignment of on-going IPv6 work within standards and specifications bodies.
- Help to develop key guidelines permitting the efficient integration of IPv6.
- Where appropriate work out proposals for IPv6 work activities.
- Identify major Integrated Projects in view of IPv6 to extend and complement, if necessary, the goals of this project.
LONG aims to foresee and solve problems related to the design and deployment of Next Generation Networks and Advanced User applications. LONG is focused in IPv4, since this protocol is expected to become part of NGN networks. LONG experiments cover Network Access Systems (ADSL, CATV, ISDN) and Transport Technologies (ATM, POS, GbE) as well as IPv4 nodes (hosts, routers).

To achieve a complete study, LONG also includes studies and tests related to advanced network services (mobility, multicast...), end-user IPv4 applications (CSOC videoconference) and IPv4-IPv6 Transition Mechanisms.

Objectives

The first LONG objective is to deploy a Next Generation Test-bed where IPv6 protocol can be studied and tested over different access and transport technologies.

Advanced network services are studied and tested in order to validate the integration of them together with the IPv6 protocol.

IPv4-IPv6 transition mechanisms are studied and tested to incorporate transition scenarios and solutions in the LONG test-bed.

Finally a relevant end-user application or a set of them are to be migrated during the project, producing a set of guidelines about porting applications to IPv6 and mixed IPv4-IPv6 scenarios.

Applications

LONG will provide guidelines and conclusions related to the integration and end-user orientation of all items explained before.

The main application of the project will be derived from the results and conclusions obtained in the trials and experiments to be done once the stable IPv6 platform is ready.

Technical Approach and Test-Bed

In order to achieve all LONG objectives, the following items are to be studied and tested: IPv4 study and equipment selection, Access and Transport systems, Transition Mechanisms, Advanced Network Services, End-user services, CSOC apps, porting.

All partners work alone at the beginning for each item, generating documentation with a detailed description, standardization status and basic implementation and configuration of the selected implementation. Then, these technologies are tested in some partners premises including them in the LONG test-bed to perform trials and experiments.

The first relevant milestone has been connecting all IPv6 partner's networks obtaining a first release of the IPv6 test-bed. Next step has been setting up some basic network services: DNS, routing protocols (BGP) and develop and install network monitoring tools.

The following step is to include in the network-end-user services: WEB server, FTP server, Mail and News services connected to current Internet mail system, LDAP server including LONG participants information, IRC services, etc.

The connectivity of these IPv6 servers with IPv4 & IPv4 clients, and even other IPv4 servers, will naturally demand the installation of the Transition Mechanisms studied and tested first by each partner (stand-alone tests).

In parallel with all this work, ISABEL (CSOC Collaborative work) IPv4 application is used from the beginning of the project to perform most of the LONG meetings using an IPv4 temporarily broadband infrastructure (needs 2 Mbps for multi-videoconference).

One main task of LONG project is to port ISABEL software to IPv6 and generate applications porting and migration guidelines. Once ISABEL6 is tested enough, the objective is to re-design the IPv6 LONG Test-bed (using SDH/ATM or other broadband services/projects) to perform LONG meetings using ISABEL6 over the permanent project IPv6 infrastructure.

The stable IPv6 project Test-bed is showed in the figure in the previous page. In that figure the different access systems, user service's servers and client hosts appear to be connected to a single IPv6 LONG network. This is really a global vision of the distributed platform. The actual infrastructure corresponds to it in the following manner:

- Central LONG IPv6 network: Is a network of IPv6 subnets, each subnet in placed in each partner's premises,
- Array of IPv6 servers/dements: They are distributed among all partners premises.
- IPv6 Network and IPv4 servers/Clients: Composed by all IPv6 test networks where each partner install IPv4 clients/server to test transition scenarios.

Trials and Experiments are performed over this stable platform.

Objectives

LONG aims to foresee and solve problems related to the design and deployment of Next Generation Networks and Advanced User applications. LONG is focused in IPv4, since this protocol is expected to become part of NGN networks. LONG experiments cover Network Access Systems (ADSL, CATV, ISDN) and Transport Technologies (ATM, POS, GbE) as well as IPv4 nodes (hosts, routers).

To achieve a complete study, LONG also includes studies and tests related to advanced network services (mobility, multicast...), end-user IPv4 applications (CSOC videoconference) and IPv4-IPv6 Transition Mechanisms.

Objectives

The first LONG objective is to deploy a Next Generation Test-bed where IPv6 protocol can be studied and tested over different access and transport technologies.

Advanced network services are studied and tested in order to validate the integration of them together with the IPv6 protocol.

IPv4-IPv6 transition mechanisms are studied and tested to incorporate transition scenarios and solutions in the LONG test-bed.

Finally a relevant end-user application or a set of them are to be migrated during the project, producing a set of guidelines about porting applications to IPv6 and mixed IPv4-IPv6 scenarios.

Applications

LONG will provide guidelines and conclusions related to the integration and end-user orientation of all items explained before.

The main application of the project will be derived from the results and conclusions obtained in the trials and experiments to be done once the stable IPv6 platform is ready.

Innovation

The most innovative characteristics of LONG project are:

- Integration: IPv4, different access & transport systems, transition scenarios, advanced services and applications are tested to integrate all them in a single platform.
- Practical orientation: Not all combinations of T.M. and transition scenarios are studied. The transition mechanisms are only introduced in the stable platform when needed by the network/user services (IPv4 IPv6 clients/host interaction).
- End-user orientation: All elements in the stable test-bed are introduced to provide benefits for user/network services.
Abstract

The European research project OverDRiVE (Spectrum Efficient Uni- and Multicast Services Over Dynamic Multi-Radio Networks in Vehicular Environments) aims at UMTS enhancements and coordination of existing radio networks into a hybrid network to ensure spectrum-efficient provision of mobile multimedia services. An IPv6-based architecture enabling interworking of cellular and broadcast networks in a common frequency range with dynamic spectrum allocation (DSA).

Objectives

The project objective is to enable and demonstrate the delivery of spectrum-efficient multi- and unicast services to vehicles. OverDRiVE addresses resource efficiency by sharing network and spectrum resources. OverDRiVE will:

- Develop a vehicular router, providing multi-radio access to a moving intra-vehicular area network (IVAN). The concepts rely on Mobile IPv6 extensions for mobile networks.
- Develop and demonstrate efficient IPv6 mobile multicast techniques (HMIC).
- Provide mechanisms for spectrum sharing between systems using Dynamic Spectrum Allocation (DSA) according to the actual load. OverDRIVE will investigate system coexistence in one frequency band.
- Achieve participation in the Internet Engineering Task Force (IETF), Mobile IP Working Groups as well as in the Mobile Networks (NMHO) Birds of a Feather and subsequent Working Groups. Monitoring and participation in 3GPP, ITU and Digital Video Broadcasting Project.

The project is divided into four work packages, which are hierarchically subdivided into several tasks. WP1 (Spectrum Efficient Radio Resource Management) investigates new and advanced methods for dynamic spectrum coordination in old and new frequency bands and the coexistence (with regard to interference and sensitivity) of different radio services such as UMTS and DVB-T in one frequency band. It develops enhancements for UTAN to provide spectrum-efficient multicast and asymmetric services. WP2 (Mobile Multicast Protocols) enables mobile multicasting by transport IP-level protocols in a multi-radio environment. A mobile multicast and group management functionality will coordinate the traffic distribution to different access systems. WP3 develops a multicast prototype. WP4 (Mobile Routers and Sub-Groups) specifies a vehicular router that provides various access from the IVAN (Intra-Vehicular Area Network) to multi-radio services. WP5 demonstrates the key concepts of OverDRIVE. WP4 (Project Management and Dissemination) establishes the project management organisation, coordinates the inter WP work, develops a business model.

The OverDRiVE project has the ambitious aim to demonstrate key issues of work package 2 (Multicasting) and work package 3 (Mobile Router and IVAN). The test-beds consists of an entirely IPv6-based core network that supports dynamic IPv6 routing as well as link-, inter- and intra-domain multicast routing protocols such as MLD, M-BGP and PIM-SM. Due to certain legacy aspects of DMS-IP protocols, IPv6-to-IPv4 transition mechanisms will also be deployed. Network mobility at IP level will be demonstrated on mobile routers and attached hosts. Several applications are currently being considered, most based on multi-radio delivery of video-streaming sessions. Hybrid access systems: WLAN, UMTS-T and various forms of LTE-UW.

Innovation

The functionality of a mobile router of an IVAN is far beyond the normal forwarding of IP packets. In a multi-radio network infrastructure the mobile router must on one hand support seamless handover between various radio systems to ensure network connectivity, and on the other hand support multiple user devices that are brought into and out of the IVAN. The management of the mobility of sub-networks and the IP overlay network will be investigated. A mobile multicast mobility and group management functionality will coordinate the traffic distribution to different access systems in a hierarchical multi-layer cell architecture. It will select the access systems which provide the multicast transport service in the most efficient way. The multicast group management will group according to available bandwidth, region, and capabilities. Today’s radio networks operate with fixed term spectrum allocations even if the actually required spectrum varies both over time and region. By introducing dynamic spectrum allocation (DSA) and regional systems coexistence for the radio access systems, spectrum could be shared between different systems to optimise the overall usage in an area. Project will develop methods for random dynamic spectrum management, requiring new methods for automatic spectrum selection and investigations to assure the coexistence and evaluation of the performance of different radio technologies in one fragmented frequency band.

Key words:

IPv6 Prototyping and Demonstration.

Multicast Mobility, Group Management and Mobile Router.

Mobile router: Support for Multi-access and IVAN Mobility.

IPv6 Mobility, Mobile IP and Mobile Routers.

Multicast: Optimize Multicast transmission by.

Sub-Group Management, and Multicast: Mobility Management.

Moving Intra-Vehicular Area Networks (IVAN).

Mobile-router: Support for Multi-access and IVAN Mobility.

Roaming into IVAN: Authentication and Authorization (AAAV).

IPv6 Prototyping and Demonstration.

Multicast Mobility, Group Management and Mobile Router.

Spectrum Efficient Uni-and Multicast Services Over Dynamic Multi-Radio Networks in Vehicular Environments

Contract no.: IST-2001-35125

Project type: RTD

Start date: 01/04/2002

Duration: 24 months

Total budget: 4,990,795 €

Funding from the EC: 3,956,374

Total effort in person-months: 151

Objectives

- IPv6 Prototyping and Demonstration.
- Multicast Mobility, Group Management and Mobile Router.
- Sub-Group Management, and Multicast: Mobility Management.
- Moving Intra-Vehicular Area Networks (IVAN).
- Mobile-router: Support for Multi-access and IVAN Mobility.
- Roaming into IVAN: Authentication and Authorization (AAAV).
- IPv6 Prototyping and Demonstration.
- Multicast Mobility, Group Management and Mobile Router.

Technique

The project is divided into four work packages, which are hierarchically subdivided into several tasks. WP1 (Spectrum Efficient Radio Resource Management) investigates new and advanced methods for dynamic spectrum coordination in old and new frequency bands and the coexistence (with regard to interference and sensitivity) of different radio services such as UMTS and DVB-T in one frequency band. It develops enhancements for UTAN to provide spectrum-efficient multicast and asymmetric services. WP2 (Mobile Multicast Protocols) enables mobile multicasting by transport IP-level protocols in a multi-radio environment. A mobile multicast and group management functionality will coordinate the traffic distribution to different access systems. WP3 develops a multicast prototype. WP4 (Mobile Routers and Sub-Groups) specifies a vehicular router, that provides various access from the IVAN (Intra-Vehicular Area Network) to multi-radio services. WP5 demonstrates the key concepts of OverDRIVE. WP4 (Project Management and Dissemination) establishes the project management organisation, coordinates the inter WP work, develops a business model.

The project is divided into four work packages, which are hierarchically subdivided into several tasks. WP1 (Spectrum Efficient Radio Resource Management) investigates new and advanced methods for dynamic spectrum coordination in old and new frequency bands and the coexistence (with regard to interference and sensitivity) of different radio services such as UMTS and DVB-T in one frequency band. It develops enhancements for UTAN to provide spectrum-efficient multicast and asymmetric services. WP2 (Mobile Multicast Protocols) enables mobile multicasting by transport IP-level protocols in a multi-radio environment. A mobile multicast and group management functionality will coordinate the traffic distribution to different access systems. WP3 develops a multicast prototype. WP4 (Mobile Routers and Sub-Groups) specifies a vehicular router, that provides various access from the IVAN (Intra-Vehicular Area Network) to multi-radio services. WP5 demonstrates the key concepts of OverDRIVE. WP4 (Project Management and Dissemination) establishes the project management organisation, coordinates the inter WP work, develops a business model.

The OverDRiVE project has the ambitious aim to demonstrate key issues of work package 2 (Multicasting) and work package 3 (Mobile Router and IVAN). The test-beds consists of an entirely IPv6-based core network that supports dynamic IPv6 routing as well as link-, inter- and intra-domain multicast routing protocols such as MLD, M-BGP and PIM-SM. Due to certain legacy aspects of DMS-IP protocols, IPv6-to-IPv4 transition mechanisms will also be deployed. Network mobility at IP level will be demonstrated on mobile routers and attached hosts. Several applications are currently being considered, most based on multi-radio delivery of video-streaming sessions. Hybrid access systems: WLAN, UMTS-T and various forms of LTE-UW.

Innovation

The functionality of a mobile router of an IVAN is far beyond the normal forwarding of IP packets. In a multi-radio network infrastructure the mobile router must on one hand support seamless handover between various radio systems to ensure network connectivity, and on the other hand support multiple user devices that are brought into and out of the IVAN. The management of the mobility of sub-networks and the IP overlay network will be investigated. A mobile multicast mobility and group management functionality will coordinate the traffic distribution to different access systems in a hierarchical multi-layer cell architecture. It will select the access systems which provide the multicast transport service in the most efficient way. The multicast group management will group according to available bandwidth, region, and capabilities. Today’s radio networks operate with fixed term spectrum allocations even if the actually required spectrum varies both over time and region. By introducing dynamic spectrum allocation (DSA) and regional systems coexistence for the radio access systems, spectrum could be shared between different systems to optimise the overall usage in an area. Project will develop methods for random dynamic spectrum management, requiring new methods for automatic spectrum selection and investigations to assure the coexistence and evaluation of the performance of different radio technologies in one fragmented frequency band.

Key words:

IPv6 Prototyping and Demonstration.

Multicast Mobility, Group Management and Mobile Router.

Mobile router: Support for Multi-access and IVAN Mobility.

IPv6 Mobility, Mobile IP and Mobile Routers.

Multicast: Optimize Multicast transmission by.

Sub-Group Management, and Multicast: Mobility Management.

Moving Intra-Vehicular Area Networks (IVAN).

Mobile-router: Support for Multi-access and IVAN Mobility.

Roaming into IVAN: Authentication and Authorization (AAAV).

IPv6 Prototyping and Demonstration.

Multicast Mobility, Group Management and Mobile Router.
Abstract

SATIP6 will examine the most immediate technical issues facing satellite broadband access in the coming years, namely the functions to be implemented in the protocol layer between physical medium access and the IP layer (i.e. typically layer 2). The introduction of IPv6 (compared to today’s IPv4) requires modification of user applications and network infrastructure, which will be a gradual process and will be implemented differently in different parts of the global network. The satellite system and notably the satellite transport protocols as well as the interfacing and the inter-working with the core network at the gateway stations will need to be adapted to provide cost-effective services compatible with terrestrial network IPv6 services.

Objectives

The objectives of the project are to evaluate and demonstrate key issues of integration of the satellite-based access networks into the Internet in order to offer multimedia services over wide areas. IP will serve as the common denominator to allow inter-operability for services and transport technology within integrated networks. The project will define solutions for two stages:

- For the short-to-medium term focusing on better adaptation of DVB-RCS access for IP services with current satellites. The objective is to make access to the satellite appear transparent to the IP layer, by improving transmission performance over DVB-RCS and by allowing common IP-based equipment and terminals to be used (i.e. similar to ADSL, cable modems, etc.).

- For long term cases, the shorter term solutions defined for IP/DVB-RCS will be extended and adapted for more advanced satellite systems (i.e. systems interfaced with mesh connectivity (directly between users) via transparent or regenerative payload). In addition satellite integration into Next Generation Networks (NGN) based on IPv6 associated with a range of advanced features in terms of mobility and security, for example, will be targeted.

Technical Approach

The emphasis of the project will therefore be on:

- IP service support within the satellite access network, and the integration of the satellite access network into the Internet by defining scenarios and issues related to migration to the IPv6-based Internet.
- Adoption and optimisation of the DVB-RCS access standard in order to support layer 2 models from terrestrial networks, such as the ADSL or MPLS.
- Definition of new label-based access techniques (i.e. “IP-dedicated”) for further efficiency improvement of satellite access, and compatibility enhancement between satellite-based networks and the next generation (i.e. IPv6-based) terrestrial Internet.
- Advanced IP inter-working: mobility, QoS, Security and Multicast.
- Development of a demonstrator for broadband multimedia services transported over IP and DVB-S/RCS to validate results achieved in the course of the project.

Test-bed

The aim of the test-bed development is to validate innovative Satellite/IPv6 integration aspects focusing on two satellite architectures:

- Network interconnection through MPLS-aware satellite stacks.
- Network interconnection through IPv6-aware satellite stacks.

Provisions are made for live experiments using a connection to Renater, the French experimental IPv6 network connected to the Internet. Based on the satellite access network definition for the long term case, the test-bed will define and implement key Satellite/IPv6 features. It will be based upon:

- Complete DVB-RCS/HRC/Stack DMM (i.e. with resource management protocols and algorithms).
- Hub/Satellite/BSAT stations based on Linux.
- IPv6 transport mechanisms.
- QoS mechanism enhancement (based on side DiffServ and RSVP).
- Specific IPv6 applications: secure transactions, QoS-aware applications, IPv6 Linux applications: Web (Streaming video), Chat, White board (Multicast).

Standarisation Activities

The project will contribute to the following standards groups:

- ETSI (BRAHMS, Broadband Satellite Multimedia) group, by building upon work started in the BRAHMS project.
- IETF: production of Internet Draft on “IPv6 over Satellite” and participation at selected meetings.
- IPv6 Forum: contribution and participation.

Innovation

In the long term case, a new label-based satellite transfer scheme (such as “IP-dedicated”), introduced in BRAHMS over DVB-RCS needs to be considered to show how IPv6 and future satellite services can be most efficiently transported over DVB-RCS. DMB-RCS is being enhanced with more layer 2 functions to provide flexible and mesh connectivity. This is seen as a good opportunity to show how “IP-dedicated” can make use of these new functions, and show the potential gain of its connectionless transfer mode.

At the IETF, the idea of better encapsulation of IP over MPLS is also gaining momentum. “IP-dedicated” therefore needs to be considered as a potential replacement for the current MHE (Multi-Protocol Encapsulation).

SATIP6 is an essential step for an European answer. It prepares the industrial choice for advanced Broadband Multimedia System. It deals with innovative solutions that have not yet been commercially proposed and will place the European Space Industry in a strong position to compete and succeed in the global market.
Technical Approach

The demonstrator components are:
- The home network.
- The gateway and the OSGi service gateway.
- The OSGi gateway manager located in Grenoble France.
- Services for demonstrations illustration.
- ADSL, VDSL, Giga ethernet access network.

All these components are integrated together in order to provide a demonstration between FT R&D site in France, Tilab site in Turin, Sony site in Stuttgart.

Test-bed

The IPv6 infrastructure is not the primary goal of the project, but nevertheless it is under investigation and will lead to a demonstration. The objective is to understand the benefit of IPv6 in the home network. Tilab site, FT R&D site are connected directly to the 6bone. Some other tunnels are connecting Sony Stuttgart and Opensugar in France. Tilab provides a tunnel broker in order to provide this interconnection service. The demonstration illustrates end to end services over IPv6 to the home terminal. IPv6 end to end services have been simulated between home networks from two different location in France.

IPv6 Services

Today, IPv6 core protocols are now available, but it is still difficult to applications and services based on IPv6 stacks. Services tested in @HOM IPv6 on line game service (Quake) and IPv6 PM3 streaming, instant messaging services. A collaboration with project developing application over IPv6 will benefit to the domain and could open new perspectives for the 6PCRD call.
Applications

ANDROID has developed several IPv6 application layer software modules that realize its objective of managed active services. We divide these modules into two categories: management and active services. In the former case, we have developed or employed the following: Management Information Distribution (MID) server, Resource Manager, Security Manager, Resource Discovery, and FunnelWeb. Regarding active services, we have developed: Transcoding Active Gateway, Watermark Reader/Policer, and Multi-Media Conference Recorder (MMCR). Below we show an abstract operation of ANDROID in its construction of a dynamic VPN.

Technological Approach

The success of the ANDROID project is measured against the achievement level of:

• Designing and developing active platforms that can be managed and support the control of active services in the form of proxylets.
• A secure transport service supporting dynamic and incremental VPNs that are data-driven and established in an on-demand manner.
• Policy based IPv6 Proxylets that can augment the services of end-to-end flows.
• Simulation of active components to determine their scaling properties.
• Integration and testing of the ANDROID IPv6 software and management architecture over the wide area using IPv6 networks using test beds like the 6bone for inter-site connectivity.

Objectives

• Research in the design of an extensible management system for active services. The system is to be controlled via XML-defined policies that articulate conditions and actions to be taken by proxylets.
• Use and leverage related efforts in policy based management and distributed active edge services that are being advanced in the IETF. Where possible, introduce state-of-the-art approaches from ANDROID into the IETF standards process.
• Disseminate, liaise, and coordinate efforts with related projects and other institutions interested in IPv6 applications and policy based managed active services.

Innovation

In order for the community to more confidently accept the use of active services, a secure management architecture must exist. The ANDROID project has produced a policy based design that offers management of active services for both routers and servers.
Abstract

The overall aim of the CRUMPET project is to implement, validate and trial tourism-related value-added services for nomadic users (across mobile and fixed networks). In particular, the use of agent technology will be evaluated (in terms of user-acceptability, performance and best-practice) as a suitable approach for the fast creation of robust, scalable, automatically accessible nomadic services. The implementation is based on FIPA-OR, a standards-compliant open source agent framework, extended to support nomadic applications, devices and networks.

Objectives

The main goals of the project are to:

- Develop a service-oriented architecture to establish and deploy flexible tourism services and applications.
- Adapt tourism services to the various QoS levels offered by different bearer services, to changes in physical location, and to other contextual factors such as the characteristics of the terminal in use.
- Develop a generic seamless execution environment across different types of networks and access devices for a range of value-added services within the tourism domain.
- Explore an evolutionary approach to the integration of emerging technologies in this application area, such as the provision of services over mobile cellular networks such as GPRS/UMTS; wireless data networks such as WLAN and Bluetooth, and including wired data standards such as IP.
- Explore the use of contextual information such as presence, location (e.g. GPRS), and user preferences (e.g. service-specific preferences and preferences associated with different contexts), in order to intelligently adapt service delivery.
- Explore the applicability of advanced software techniques, specifically Intelligent Agent technology, for service creation, deployment, distribution, personalisation, and interaction for nomadic users.
- Develop an architecture that supports the distribution and re-distribution of intelligence between smart terminals and smart network elements - this will involve consideration of active network research.
- Evaluate how the system meets the business needs of multiple service providers and network operators (in a competitive environment) and the relationship between them.

Technical Approach

The technical approach towards achieving the objectives was to:

- Select and modify services that will be trialled and evaluated by multiple mobile service providers.
- Select and modify service content that is tourism-related, and supports intelligent, anytime, anywhere communication.
- Adapt nomadic services to enable them to respond to underlying dynamic characteristics, such as network QoS and physical location.
- Implement service architecture that is standards-based and that will be made available at the end of the project, as (mostly) publicly available open source code.
- Implement a service that is suitable for networks that will be typical of those that a tourist user might be exposed to now and in the near future (including IP networks, Wireless LAN, and mobile networks supporting VAP technology, GDB, GPRS, and UMTS).
- Implement a service that is suitable for a wide range of terminal types, including next generation mobile phones/PDAs/PCs and hybrid terminals.

The implementation is being developed using best practice, including an "open source for open standards" platform. The implementation is based on generic re-usable components on an open distributed architecture. During the trial phase of the project, an assessment is being made of the scalability, robustness, and time-to-market advantages of the approach.

Expected Benefits

The main expected achievement is a seamless realisation for tourists of the Mobile Internet that can evolve from GPRS through GPRS to UMTS, in addition, to WLANs. It represents an evolution of the Internet Portal concept.

Funding from the EC: 1.896.574
Total budget: 3.461.940
Duration: 26 months
Total effort in person-months: 365.9
Web site: http://www.ist-crumpet.org

Contact person
Stefan Poslad
E-mail: stefan.poslad@elec.qmul.ac.uk
Fax: +44 20 7882 7997
Tel: +44 20 7882 3754

Project name: CRUMPET
Contract no.: IST-1999-20147
Project type: RTD
Start date: 01/10/2000

Abbreviations

FIPA: Foundation for Intelligent Physical Agents
OR: Open Reference
CRUMPET: Creation of User Friendly Mobile Services Personalised for Tourism
IST: Information Society Technologies
Ontoweb: Agentlink
AOI: Association of Online Information
FETISH: Free and Open Source Infrastructure for Search and Hypermedia
ONTOWEB: Ontology Web
Agentlink: A Flexible Agent/Intelligent Platform for Multi-Vendor Applications and Services
Context-Aware Services: Services that change in response to environment
Objectives
- Services Personalised for Tourism
- Creation of User Friendly Mobile Services Personalised for Tourism
- Technical Approach
- Expected Benefits
- Ontoweb
- A Flexible Agent/Intelligent Platform for Multi-Vendor Applications and Services
- Context-Aware Services: Services that change in response to environment
- Objectives
- Services Personalised for Tourism
- Creation of User Friendly Mobile Services Personalised for Tourism
- Technical Approach
- Expected Benefits
Dynamic Radio for IP Services in Vehicular Environments

Abstract

The European research project DRiVE (Dynamic Radio for IP Services in Vehicular Environments) aims at enabling spectrum-efficient high-quality wireless IP in a heterogeneous multi-radio environment to deliver in-vehicle multimedia services. DRiVE addresses this objective on three system levels: (1) The project investigates methods for the coexistence of different radio systems in a common frequency range with dynamic spectrum allocation. (2) DRiVE develops an IPv6-based mobile infrastructure that ensures the optimised inter-working of different radio systems (GSM, GPRS, UMTS, DAB, DVB-T) utilising new dynamic spectrum location schemes and new traffic control mechanisms. (3) Furthermore, the project designs location dependent services that adapt to the varying conditions of the underlying multi-radio environment.

Objectives:

- Design an IPv6-based mobile infrastructure that ensures the inter-working of different radio systems (GSM, GPRS, UMTS, DAB, DVB-T). The IPv6 infrastructure will provide support for asymmetric communication and for continuous service in case of handover.
- Develop methods for dynamic frequency allocation and for coexistence of different radio technologies (GSM, GPRS, UMTS, DAB, DVB-T) in one frequency band to increase the total spectrum efficiency.
- Optimize IP multimedia services to the vehicle. DRiVE develops adaptive services for a multi-radio vehicular environment.
- Demonstrate the key concepts and liaise and coordinate with clusters, fora, standards organizations for dissemination of the results.

Figure 1: Concept view of DRiVE system showing the three areas of investigation: spectrum, network, and application/service aspects.

Technical Approach

DRiVE is divided in four work packages:

- WP1 (dynamic radio aspects): develops methods for dynamic frequency allocation and for coexistence of different radio technologies (GSM, GPRS, UMTS, DAB, DVB-T) in one frequency band to increase the total spectrum efficiency and reach.
- WP2 (IP-infrastructure): realises an IPv6-based mobile infrastructure that ensures the optimised inter-working of cellular and broadcast networks. The IP-infrastructure will provide support for asymmetric communication, for uni-, multi-, and broadcast, for quality of service and for continuous service in case of handover.
- WP3 (services, implementation, and trials): develops adaptive services for a multi-radio vehicular environment, integrates the key concepts of DRiVE developed in WP1&2 to demonstrate them and validate the benefits by user trials and field test.
- WP4 (project management and dissemination): manages the project and coordinates the dissemination of the results, e.g. contribution to standardisation activities.

Innovation

The DRiVE project addresses the convergence of cellular and broadcast networks. It aims at laying the foundation for broadband in-vehicle multimedia services. This is facilitated by an architecture that enables spectrum-efficient high-quality wireless IP. The key innovation of DRiVE is the distribution of IP packet streams over the best suitable radio link in a heterogeneous multi-radio environment. In such an environment different radio technologies cooperate in a common dynamically shared frequency range. This will allow a faster penetration of new radio technologies and a more market-oriented usage of the available spectrum.

Results

The DRiVE project specified an IPv6-based multi-radio overlay architecture (CDR-the deliverable is available from http://www.ist-drive.org/). It ensures full cooperation of cellular and broadcast networks, including AAA functionality, HIP/IPv6 mobility and continuity of service (D15) and QoS management (D11). The cooperation of multiple access systems requires a common coordination channel (CCC) that announces the available access systems and allows for negotiation between them to distribute the traffic and share the spectrum. The project defined the CCC protocols (D14). DRiVE has developed a mechanism called “IP packet stream flow control” to distribute IP packet streams over the best suitable radio link. This concept has resulted in an Internet Draft (draft-soliman-ietf-mtrace-01.txt) extending HIP/IPv6.

The DRiVE project developed algorithms for dynamic spectrum allocation and traffic control (D13). Based on the proposed for Dynamic Spectrum Allocation the simulations resulted in an estimation for the increase of spectrum efficiency, both for temporal and regional DSA (D09). The coexistence of DMB-T and UMTS in one frequency band was verified by simulations and measurements (D10). The telecommunication and broadcast partners produced a first draft of fair sharing rules (D12) to prepare discussion with regulatory bodies (D21).

The project implemented these new location dependent value-added services (D15) in telephones and mobile office. In addition two technology demonstrators were built: a “Traffic Information” service demonstrating MPEG-4 video streaming and a “video conferencing” service demonstrating adaptive bandwidth adjustment. DRiVE’s concept of re-useable base services (D06) proved to accelerate the introduction of new mobile services.

The demonstration of the DRiVE services and the mobile multimedia car at the IFA 2001 re-usable base services (D06) proved to accelerate the introduction of new mobile services.

Furthermore, the project designs location dependent services that adapt to the varying conditions of the underlying multi-radio environment.

The project implemented three new location dependent value-added services (D17): city guide, travel companion, and mobile office. In addition two technology demonstrators were developed: a "video conferencing" service demonstrating adaptive bandwidth adjustment. DRiVE’s concept of re-useable base services (D06) proved to accelerate the introduction of new mobile services.

The project has been presented at industry fora, such as UMTS forum, DVB project, fair and IST Mobile Summit 2002 was well received from visitors and press (D05, D16, D18).

Conferences and fora, such as UMTS forum, DVB project, fair and IST Mobile Summit 2002 was well received from visitors and press (D05, D16, D18).

The DRiVE project developed algorithms for dynamic spectrum allocation and traffic control (D12). Based on the proposal for Dynamic Spectrum Allocation the simulations resulted in an estimation for the increase of spectrum efficiency, both for temporal and regional DSA (D09). The coexistence of DVB-T and UMTS in one frequency band was verified by simulations and measurements (D10). The telecom and broadcast partners produced a first draft of fair sharing rules (D13) to prepare discussion with regulatory bodies (D21).

The project implemented these new location dependent value-added services (D15) in telephones and mobile office. In addition two technology demonstrators were built: a “Traffic Information” service demonstrating MPEG-4 video streaming and a “video conferencing” service demonstrating adaptive bandwidth adjustment. DRiVE’s concept of re-useable base services (D06) proved to accelerate the introduction of new mobile services.

The project has been presented at industry fora, such as UMTS forum, DVB project, fair and IST Mobile Summit 2002 was well received from visitors and press (D05, D16, D18).

The demonstration of the DRiVE services and the mobile multimedia car at the IFA 2001 re-usable base services (D06) proved to accelerate the introduction of new mobile services.

Furthermore, the project designs location dependent services that adapt to the varying conditions of the underlying multi-radio environment.

The project implemented three new location dependent value-added services (D17): city guide, travel companion, and mobile office. In addition two technology demonstrators were developed: a "video conferencing" service demonstrating adaptive bandwidth adjustment. DRiVE’s concept of re-useable base services (D06) proved to accelerate the introduction of new mobile services.

The project has been presented at industry fora, such as UMTS forum, DVB project, fair and IST Mobile Summit 2002 was well received from visitors and press (D05, D16, D18).

The demonstration of the DRiVE services and the mobile multimedia car at the IFA 2001 re-usable base services (D06) proved to accelerate the introduction of new mobile services.
The Future Home project will create a solid, secure, user-friendly home networking concept with open, wireless networking specification and will introduce usage of IPv6 and Mobile IP protocols in the wireless home network. The project will specify and implement prototypes of wireless home network elements and service points, develop new services that use capabilities of the network and verify feasibility of the concept in user trial. The networking concept will define wireless home networking platform with network protocols and network elements. It will define the wireless technologies and network management methods for supporting user friendliness and easy installation procedures as well as management of the wireless resources. Breathing privacy and security in wireless networking is an integral part of concept.

The objective of the project is to introduce the usage of IPv6 in residential environments it is possible to solve important issues, such as ease of installation of the networks to a level of complete transparency for the user; the QoS of control, voice and video contents; the security and privacy of communication and interoperability with external communication world. Connection of Media terminals and PCs.

The main objectives of the project are to:

- Define business models and the market and end user requirements on home networks as well as the technical requirements.
- Define a solid wireless intelligent home networking architecture based on IPv6 and other proposed wireless communication and network solutions that fulfills the requirements.
- Define a open and scalable home network base station concept that allows intelligent automated control and management of the home network.
- Define generic device interfaces that enable home appliances, devices and terminals to be automatically connected in an intelligent way to the wireless network.
- Validate the proposed solution by building a prototype of the wireless intelligent home network and testing it with selected user groups.

By introducing the usage of IPv6 in residential environments it is possible to solve important issues, such as ease of installation of the networks to a level of complete transparency for the user; the QoS of control, voice and video contents; the security and privacy of communication and interoperability with external communication world. Connection of Media terminals and PCs.

The definition of generic device interfaces will make it easy and cost effective to insert intelligence and communication capabilities in home appliances and will accelerate the appearance of these on the market. The state of art wireless home network concept, that will be created by Future Home project, will gain the launching of markets for home networks and intelligent appliances and will lower the threshold of adoption by final users.

The vision of the advances of intelligent home network and its services, have existed for several decades, but those have not been able to become reality yet, although most of technologies have been available for a while. One of the reasons for the situation is fragmentation of home technology field and missing overall concept for home networks. On the other hand many possible network technologies have been designed for other purposes and are not suitable, as such, for home networking. When the pieces have not been working together and when some pieces are still missing, the launch of home network markets has not been able to take off. To make this happen, serious concerns should be taken, to create a solid home network concept.

The Future home project will create a solid, secure, user friendly home networking solution that would offer desired services and privacy for consumers. This home network system will allow both the high-speed media transportation and low speed control and automated information flow. The intelligent auto-configurable connections between devices and terminals in the home as well as the interoperability with the external world are essential features of the home networks.

Objectives

- The objective of the project is to introduce the intelligent communication platform that promotes the concepts of "ubiquity" into the home. The people at home will be able to move, control, communicate and enjoy the entertainment without noticing the underlying technologies or networks. The homes can then be designed with a goal of supporting an efficient lifestyle while offering extreme comfort for all citizens. The fruits of communication technology and information technology for homes will significantly improve our quality of life by enabling a richer and more active residential existence, maintaining the mental and physical health, guaranteeing safety at home and ensuring the necessary privacy of family lives.
The pan-European Gigabit research network

Abstract

GÉANT will provide pan-European interconnection between National Research and Education Networks (NRENs) in Europe at Gigabit speeds, based on direct access to optical connectivity where this is available in the market. Core connectivity procured will be 2.5 Gbps, enhanced to tens of Gbps, as soon as possible. The network will be extended from the current geography of TEN-155 to include connectivity to Cyprus, Israel and Ireland and to extend it to Bulgaria, Estonia, Latvia, Lithuania, Romania and Slovakia. Services will include a standard IP service, a premium IP service, a Guaranteed Capacity Service and Virtual Private Networks. Multicast and, later, new value-added services arising from networking developments will also be offered. A European Distributed Access will provide connectivity between European researchers and their counterparts in other world regions.

Objectives

The key objective of GÉANT is to provide a very high performance, advanced pan-European network service interconnecting the services provided by Europe’s National Research and Education Networks (NRENs). It will support the development activities of the European research and education community, including the development of new advanced applications and the exploitation of new networking capabilities. GÉANT will create a ubiquitous infrastructure interconnecting the participating NRENs based on shared core connectivity operating at 2.5 Gbps initially and in the range of tens of Gbps within four years. It will maintain and develop a stable and dependable set of services on which a large and dynamic end-user community can rely. GÉANT will initiate a set of service developments that are needed to provide predictable Quality of Service. Consistent operational procedures will be set up to manage QoS mechanisms across multiple management domains.

Technical Approach

A competitive tender was organised for the provision of circuits with capacity in the range 2.5 to tens of Gbps and other appropriate capacity where Gbps has not been offered competitively; telehousing and network management services. Following the completion of this major milestone, implementation plans were refined based on a knowledge of the response to the ITT. A core transmission network with capacities of 2.5 and 10 Gbit/s initially, with possible future upgrades to tens or hundreds of Gbps later has been implemented, involving in addition the procurement of new equipment, installation of new PoPs, integration of existing TEN-155 connectivity and the design of a mixed technology network which supports IP services over optical transmission between core locations together with IP over SDH elsewhere and the support of guaranteed capacity and VPN capability at all network nodes. Connections have been made to all partners which were not already connected to TEN-155. GÉANT PoPs have been established in all of these and in existing TEN-155 countries. A cost sharing model has been defined. Research networks from other world regions may establish interconnections with GÉANT via a European Distributed Access in order to allow academic and research collaborations between Europe and other countries to be given high performance network support. Viable are being devised of providing the capability for guaranteed QoS at the IP level. Systems for the management of interworking with equivalent NREN services are currently under development. A specification of a premium IP service which matches the requirements of the NRENs and their end-users and an implementation plan (including management and accounting systems) will be produced. Traffic measurement facilities have been installed at all nodes. Some activities are continuous operation of the GÉANT services, operation by the NRENs of their access to GÉANT, promotion of use of the network. Comprehensive reports on usage are produced monthly, annual reports will each include a review of the whole activity.

IPv6 Support

It is expected that demand for the use of IPv6 will increase and that better software implementations to support it will become available over time. It is likely that a migration to the general use of IPv6 will take place during the four year contract period. In parallel with the GÉANT network deployment, a subset of NRENs is participating in another EC-funded RTD project, dedicated to the deployment of broadband IP services on a dedicated infrastructure closely connected to the GÉANT network. This project, called 6NET, will allow, during its lifetime, the support of a smooth implementation of IPv6, as a second protocol, which will then become available to all GÉANT users by the end of the GN1 contract.
Hybrid Access Reconfigurable Multi-wavelength Optical Networks for IP-based Communication Services

Abstract

A common dynamically reconfigurable fibre infrastructure is proposed, deploying flexible wavelength routing integrated with flexible time slot allocation in a new Medium Access Control protocol. This infrastructure feeds various last-mile access networks, and provides capacity on demand while accounting for Quality of Service requirements of user traffic. An adaptive resource manager supports the VHC protocol, and aligns traffic flows with core and last-mile network capabilities. Both a wireless HIPERLAN2 and a twisted-pair VDSL user access network enabling QoS-differentiated IP traffic will be set up. Novel optical modules will be developed, such as a fast flexible wavelength router. The results of architecture studies and techno-economic analyses will be fed into consensus building activities and standardisation bodies. After being validated in laboratory trials, the system will be operated in a field trial with real users and IP-based QoS-sensitive services.

Objectives

The main objective is to stimulate the convergence of access networks, supported by:

- A dynamically reconfigurable fibre-based feeder network infrastructure, supporting a wide variety of last-mile customer access networks.
- A packet-based WDM/TDMA-MAC protocol, offering capacity on demand.
- Control plane protocols for a range of QoS classes for IP-based services.
- Techno-economic aspects of the system concept, and alternatives.
- Evolution strategies leading to convergence of hybrid access networks.
- Novel optical system modules supporting the WDM/TDMA system concept.
- To evaluate the key functionalities of the system in a laboratory test bed.
- To demonstrate the viability of the system in a field trial involving real-life IP-based services and real users, and to evaluate the users’ experiences.

Novel Optical System Modules

The following modules are developed:

- Optical cross-connect (including fast-reconfigurable gate-arrays).
- Multi-wavelength bi-directional optical fibre amplifier.
- Protection switches for ring network protection.
- Low-cost ONU (with spectral slicing, or reflective modulation of remotely generated light).
- Multi-wavelength Optical Line Terminal (OLT).

Last-Mile Access Networks

A variety of customer access networks is studied, focusing on IP-based services with various QoS classes. A HIPERLAN2 wireless interactive broadband in-door access system, and a VDSL system, are adapted to interface with the flexible DWDM fibre feeder network.

System Integration and Experiments

The system modules are tested in a laboratory set-up. Based on the results, the modules are refined, and subsequently evaluated. The modules are installed in a field trial, where experiments are run with real users and IP-based services.
Advanced architecture for INTER-domain quality of service

Abstract

In order to enhance the inter-domain QoS analysis in large-scale multi-domain Internet (IPv4, IPv6) infrastructures, the project INTERMON will develop and demonstrate a scalable inter-domain QoS architecture with integrated monitoring, topological and geographical structure mapping, modelling, simulation, optimization and visual data mining components using a common distributed QoS database with intelligent agents for management of component interworking and automated processing of different kind of inter-domain QoS information (inter-domain QoS, traffic, resource, events).

The focus is to offer to Internet service providers (ISP), QoS enabled end-system developers and application users, an integrated inter-domain QoS analysis architecture for the purpose of QoS monitoring, planning and optimization.

Objectives

The aim is a novel scalable inter-domain QoS analysis architecture for large interconnected Internet domains (DiffServ, IntServ, MPLS) based on integration of monitoring, modelling, structure mapping, simulation, optimization and visual data mining components using a common distributed database with intelligent agents for management of component interworking and automated processing of different kind of inter-domain information (QoS, traffic, resources, events, etc.) in inter-domain QoS and traffic behaviour of application classes, visualization models for inter-domain QoS, inter-domain QoS optimisation models, inter-domain network performance, resource and event information, etc.

Figure: INTERMON objectives

Project Description

1. Definition of inter-domain QoS analysis framework for test and verification of inter-domain QoS of application classes (e.g. Internet telephony, content and videoconferencing, etc.) in multi-domain Internet infrastructures.
2. Design of scalable inter-domain QoS analysis architecture with integrated monitoring, topological and geographical QoS structure mapping, modelling, simulation, optimization and visual data mining components using common distributed QoS database.
3. Implementation of a prototype of integrated inter-domain QoS analysis architecture:
 - Distributed inter-domain database with intelligent agents for management of tool interworking and automated information processing.
 - Integrated inter-domain QoS monitoring toolkit including passive monitoring, active probing tools and event detection tools.
 - Modelling toolkit including algorithms and tools (long term trend and short term experiments) for prediction of inter-domain QoS for application classes, network performance models, event pattern, traffic profiles.
 - Automated mapping of Internet topological and geographical structures including options for mapping of inter-domain QoS, traffic, resources, events and network performance issues to autonomous systems (BGP routing), countries, equipment (multiple IP addresses map to the same router), and geographic location information (latitude/longitude).
 - Simulation environment for inter-connected QoS based domain (IPv4, IPv6) infrastructures and QoS enabled application classes combined with optimization toolkit.
 - Visual data mining environment (models, tools and advanced multidimensional techniques) for specific kind of inter-domain QoS and traffic analysis.

Innovation

The project INTERMON is addressing one of the most important and complex problems facing the telecommunications industry today, namely inter-domain QoS management and network topology by integration of measurement and modelling techniques for large-scale QoS and traffic analysis in inter-connected domain infrastructures. The approach taken by the project is to provide a comprehensive solution in form of an innovative advanced architecture for inter-domain QoS monitoring, modelling and visualization by bringing together expertise in measurement and monitoring technologies, mathematical and statistical modelling, simulation, visual data mining and data base operation. The INTERMON architecture is aimed at integrated QoS (Quality of Service) monitoring, analysing and modelling of application traffic in inter-domain environment using data base and visual data mining facilities.

INTERMON features address the automated measurement and modelling of QoS and border router traffic for different time scales as well as visual data mining relating statics and models describing end-to-end and inter-domain QoS as well as border router traffic. Concepts like “spatial composition” of inter-domain QoS and “policy-based” performance management and traffic collection are considered.

The key innovation points of INTERMON architecture are focused on:
- Integration of tools for automated Internet structure analysis, monitoring, modelling and visual data mining using common data base for the purpose of QoS monitoring and verification in an inter-domain environment.
- Data base design and data mining to support requirements for spatial composition of inter-domain QoS and automated producing of monitoring, modelling and analysis reports considering different aggregation interval.
- Novel architecture concept with feasible import/export interfaces for measurement and modelling data (QoS, traffic).

Applications

- Inter-domain traffic and QoS measurement, modelling and analysis.
- Visual data mining for inter-domain traffic and QoS behaviour.
- Inter-domain traffic engineering and capacity planning.
- QoS and SLA monitoring and modelling in inter-connected domains.
- Inter-domain QoS and traffic simulation.

Project participants:
- Cadenus
- Billancourt (FR)
- ITIM (CH)
- Uni Bonn (D)
- MTA (H)
- Rochester (US)
- Siemens (A)
- University of Twente (NL)
- TELIN (Y)
- TOU (S)
- UNIV (D)
- DIT-SINTEF (NL)
- CINITEC (D)
- CoDeLab (D)

Key words:
- Inter-domain QoS
- Simulation
- Spatial composition
- Traffic Analysis
- QoS Modelling
- Visual data mining

Collaboration with other EC funded projects:
- AGIRA
- OCEANA
- NDN

Tel.: +43 (0) 662 288 441
Fax: +43 (0) 662 288 2222
ulrich.hofmann@salzburgresearch.at

Reference:
- ulrich.hofmann@salzburgresearch.at
Management of End-to-End Quality of Service Across the Internet at Large

Abstract

MESCAL aims to propose and validate scalable, incremental solutions that enable the flexible deployment and delivery of inter-domain Quality of Service (QoS) across the Internet. This involves developing templates, protocols and algorithms for establishing Service Level Specifications (SLS) between Internet Service Providers (ISP) and their customers, including their peers; scalable solutions for inter-domain Traffic Engineering (TE); based on enhancements to the existing Border Gateway Protocol (BGP) routing protocol and associated route selection logic. MESCAL will consider both unicast- and multicast-based services and ensure that the proposed solutions are applicable to both IPv4 and IPv6.

Project Rationale

In today's Internet, there are numerous relationships between a multitude of stakeholders who are each responsible for part of the provision of end-to-end connectivity and value-added services. Service and content providers rely on connectivity services provided by what could be termed a loose federation of organisations, which together provide end-to-end connectivity across the global Internet. No single organisation is responsible for vertical integration, in terms of applications over service providers over network connectivity, or horizontal integration, in terms of global geographical coverage.

A major limitation of the Internet is its lack of service-level guarantees due to its basic design for best-effort packet delivery. The introduction of the IP Differentiated Services (DS) framework and subsequent standardisation efforts, represent significant progress on solving the problem of QoS delivery in a single domain for unicast traffic. However, inter-domain communication and information access is the rule rather than the exception, and extensive deployment of QoS-based services will not take place unless they can be offered across domains. The provision of end-to-end QoS is a wide-open research area whose solution will transform the Internet to the global multi-service network of the future.

MESCAL views two major aspects as essential to the deployment and delivery of inter-domain QoS-based IP services: the definition of QoS-based connectivity services to be provided by stakeholders; and, second, the means to engineer network resources to meet agreed performance and capacity targets for the contracted services. Together, these two dimensions aim at providing the means for a dynamically configurable Internet, with service requirements driving traffic engineering to meet end-to-end service demands.

Objectives

MESCAL's key objective is to propose and validate scalable, incremental solutions, enabling flexible deployment and delivery of inter-domain QoS across the Internet at large, with the following sub-objectives:

- To develop business models, based on current commercial practice and emerging business scenarios, describing the roles of and relationships between the stakeholders involved in providing QoS-based services across domains.
- To specify a generic, multi-domain, multi-service functional architecture for the flexible deployment and delivery of inter-domain QoS-based services.
- To develop templates, protocols and algorithms for the specification, negotiation, subscription and invocation of QoS-based IP services between customers and ISPs and between peer ISPs.
- To enhance existing inter-domain routing protocols and algorithms and to investigate new approaches to convey QoS information to enable scalable inter-domain traffic engineering solutions.
- To examine the impact of:
 - IPv4 on inter-domain traffic engineering and to ensure that the TE solutions proposed by the project are applicable to both IPv4 and IPv6 infrastructures.
 - Both unicast- and multicast-based services on inter-domain TE.
 - Inter-domain aspects of SLs management and TE on corresponding intra-domain aspects, and vice versa, and to investigate the cooperation required between them.
- To adapt a policy-based approach to service provisioning and network operation and investigate policies for SLs negotiation, admission, and inter-domain TE.
- To evaluate and validate the devised algorithms and protocols through simulation and test-bed prototypes.
- To contribute to international standardisation efforts, especially the IETF, and to participate in other consensus-forming activities in the IST programme.

Project Organisation

The project is structured around four Work Packages:

- WP0, Project Management and Coordination of External Liaison, is concerned with the administrative and technical management of the project, including liaison with other projects and coordination of dissemination and standardisation efforts.
- WP1, Specification of Functional Architecture, Algorithms and Protocols, is responsible for defining a business model and a generic, multi-domain, multi-service IP QoS-functional architecture for inter-domain QoS delivery. The main output will be the specification of algorithms and protocols for negotiation and establishment of inter-domain SLs, inter-domain TE and routing, including the required interactions with inter-domain TE and route computation capabilities to achieve inter-domain QoS delivery.
- WP2, System Design and Implementation, will enhance experimental routers and simulators to support the inter-domain QoS requirements of the project. Based on the specifications from WP1, WP2 will design and implement the specified algorithms and protocols, as both test-bed prototypes and simulation tools/models.
- WP3, Integration, Validation and Experimentation, is responsible for setting-up the required experimentation infrastructure and for performing validation and performance evaluation activities on the prototypes and simulations developed by WP2. The test-bed experiments are focused on proof-of-concept validation, while the simulation experiments aim at assessing the performance and scalability of the project's inter-domain solution.
MIND access network allows the connection of a generic radio interface to an IP core network. A layer 2-3 interface has been designed to inter-work the radio technology specific elements at the higher layers and yet provide them with the necessary information for an efficient management of mobility and QoS. The project centers its air interface investigations on WLAN technologies for providing coverage to hot spot areas. Solutions for dynamic frequency and resource allocation mechanisms for supporting ad hoc and self-configuring networks are dealt with. A service specific convergence layer for an IP based WLAN access network has already been specified. Proposals for extending range and supported velocities from WLANs are studied as well.

Besides the conceptual work described above, the project is conducting trials on key concepts studied in the predecessor project BRAIN.

Objectives

• To facilitate the rapid creation of broadband multimedia services and applications that are fully supported and customised when accessed by future mobile users from a large range of wireless access technologies.
• To extend the concepts of IP mobile networks. This includes new air interface topologies, ad-hoc, self-organising and meshed networks; enhanced support for QoS, ad-hoc networks and self-organisation at all layers of WLAN; QoS support in IP-based mobile networks; investigation of the spectrum requirements for systems beyond 3G.
• The project follows the use of WLAN and an IP based access network as a complement to UMTS for high bandwidth provision in hot spot areas.
• To contribute actively to standards bodies and industry forums.

The key issues studied in MIND include:

- To investigate new business models beyond 3G—mapping the value-chain into the functional entities required for rapid and flexible multimedia service creation and support.
- To provide support –QoS, mobility management and security – for ad-hoc and self-provisioned sub-networks connected to a fixed IP network.
- To investigate the generic support required at the layer 2/3 interface for vertical handover and multi-homing.
- To investigate how the range and performance of WLANs can be increased to make it suitable for a wider range of scenarios including ad-hoc networks and supporting a full range of user QoS.
- To integrate a trial environment including systems such as WLAN (e.g. HIPERLAN-2), UTRAN and IP based core network test-beds.

Test-bed

MIND will trial key concepts defined during the predecessor project BRAIN:

- Service concepts: the MIND trials experiments with different applications and implementations computer-supported collaborative work application able to handle adaptation to the network, as well as QoS and mobility support.
- Networking concepts: with the aim of providing a full mobility management solution, the BRAIN Candidate Mobility Protocol (BCMP) is implemented. This protocol fulfils the requirements for handover, Paging and Scalability and Resilience in a Wireless LAN environment, and it improves on existing gateway-centric protocols for PATH Updates. This protocol can be run on top of both IPv6 and IPv4 WLAN networks. The base-line architecture for QoS trials provides a scalable complete solution for QoS. The solution clearly separates the network layer 3 QoS providing mechanism from the layer 4 and end-to-end signalling. A set of extensions to the QoS base-line architecture directed at achieving seamless handover is experimented.
- Radio interface concepts: A test bed is used to verify the basic link layer performance of OFDM based WLANs and proposed enhancements. The inter-working between BRAIN access networks and UMTS is addressed by testing vertical handovers at IP layer between the IP access network and UMTS core network.

Innovation

MIND develops further the concepts elaborated by the IST project BRAIN and, thus, shows a path towards beyond 3G systems. It designs an access system which is optimised across application, network, and air interface layer with regard to QoS and mobility management taking into account the requirements of future mobile users. The resulting MIND trials will allow the validation of key concepts and protocols, including mobile applications exploiting high data rates. QoS negotiation between terminals and the access network, IP handovers, and integration with IP core networks over well defined interfaces. The main conceptual work of MIND includes investigations of the performance limitations of the current WLAN standards in terms of range and mobility, to reduce the gulf between 11b and the UMTS air interfaces and investigations of the way in which ad hoc and self-organising networks can be supported, including the meshed (multi-hop) case and integration with wired networks.

The results of the MIND trials are disseminated through conferences, workshops, journals, and the Internet.
Mobility and Differentiated Services in a Future IP Network

Abstract

In order to continue the evolution of the 3G generation mobile and wireless infrastructures towards the Internet and targeting the Key Action IV “Terrestrial Wireless Systems and Networks” of the IST Programme, the Moby Dick project develops, implements, and evaluates an IPv6 mobility-enabled network architecture with Authentication, Authorization, Accounting and Charging (AAAC) services and support for Quality of Service (QoS). The framework network architecture integrates separate IETF models for support of Mobile IPv6, QoS, and AAAC. A representative set of interactive and distributed multimedia applications is used to derive the system requirements for verification, validation, and demonstration of the integrated architecture in a test-bed comprising different access technologies: WCDMA, 802.11 Wireless LAN and Ethernet. Where existing applications or the IETF models do not provide what is required, the necessary extensions and modifications are provided.

Objectives:

- Definition of a common architecture integrating QoS, IPv6 mobility, and AAAC out of the separate architectural approaches proposed by IETF, with special focus on wireless problems.
- Implementation and evaluation of an IPv6 based network to fulfill the requirements of present and future mobile communication services.
- Implementation and evaluation of the QoS model based on Differentiated Services (DS) in a heterogeneous network topology and dynamic environment, in contrast to current QoS models, typically restricted to relatively static environments.
- Definition of a suitable charging concept which would enable mobile IP based services on a large scale to complement the areas currently out of scope of IETF.
- Trans-European trial to test the implementations by SQRIPES-EuRaMUS exchange students and learn their perception of the system.
- Active participation in Internet Research Task Force (IETF), Authentication, Authorisation, and Accounting Architecture working group (AAAarch), and monitoring standardisation bodies, including European Telecommunications Standards Institute (ETSI), 3G (3rd Generation Partnership Project (3GPP)), Mobile Wireless Internet Forum (MWIF), The Institute of Electrical and Electronics Engineers (IEEE) – in particular IEEE 802, Wi-Fi, 802.11, and 802.16, the 802.11 group. Follow and actively influence ongoing relevant IETF standardisation activities. Moby Dick provides a prototype environment for tests and evaluation. The evaluation will be carried with real services and real users.

Technical Approach

The Moby Dick consortium brings together companies and research institutes with a strong background in telecommunication technologies, Internet technologies, and network operation. This expertise is used to define a converged network architecture for future data and voice communication, a solution that goes beyond UMTS Release 6 (R6) and 802.11 wireless LAN. Moby Dick aims to present and discuss the emerging architecture in public, and to promote it in the research community and standardisation groups. The Moby Dick develops a prototype environment for tests and evaluation. The evaluation will be carried with real services and real users.

Test-bed

Moby Dick will perform international trials in two different sites: Madrid in Spain and Stuttgart in Germany. SQRIPES-EuRaMUS students (http://www.esn.org) will use the infrastructure for ubiquitous access to network resources and for voice communication. The trials will test different scenarios based on synchronous (VAPI) and telelearning) and asynchronous (access to administrative information, digital libraries, etc.) applications. Moby Dick will perform tests in three phases in order to learn feedback from the experiments and to master the network capabilities. First tests will be focused on local tests of the Moby Dick prototype network. The second set of tests will include unicast and multicast applications and SQRIPES-EuRaMUS students in a real life scenarios. The main objectives of the trials are as follows:

- To propose and demonstrate a converged and coherent All-IP(v6) network infrastructure able to federate heterogeneous wireless access networks.
- To evaluate in a test-bed and with representative applications the different access network technologies.
- To integrate and validate the proposed integrated network architecture in various real life scenarios.

Innovation

With the transmission capabilities vastly upgraded thanks to photonic stimulation, it is time to bring the benefits of new Internet services closer to the mobile user. This is addressed by first providing a wireless network platform and a service architecture and applications for supporting mobility. The definition, implementation, and evaluation of an IPv6-based mobility-enabled end-to-end QoS architecture starting from the IETF’s QoS models, Mobile IPv6 and AAAAC framework, carried out by Moby Dick, will provide a major contribution to a Terrestrial Wireless Systems and Networks technology discipline, which has the profound impact on the socio-economic situation of the general public including both institutional and individual users.

Some of the main Moby Dick innovative aspects:

- Definition of a common architecture integrating QoS, IPv6 mobility and AAAC out of the separate architectural approaches for each component currently provided by the IETF.
- Implementation and evaluation of an IPv6-based technological approach to fulfill the requirements of present and future mobile communication services.
- Implementation and evaluation of QoS models in highly dynamic network topologies (understanding of QoS models is normally restricted to relatively static environments).
- Definition of a suitable charging concept which would enable permanent mobile IP based services on a large scale.

Project name: Moby Dick

Project title: Mobility and Differentiated Services in a Future IP Network

Contract no.: IST-2000-25394

Start date: 02/04/2001

Duration: 36 months

Total budget: 8.950.000 €

Funding from the EC: 4.700.000 €

Total effort in person-months: 808

Web site: http://ist-mobydick.org

Contact person:

Hans Joachim Einsiedler

e-mail: hans.einsiedler@t-systems.com
tel.: +49 30 34973518
fax: +49 30 34973519

Project participants:

01. T-Systems DE

02. NEC J

03. UCM E

04. ETH Zürich CH

05. U. of Stuttgart D

06. Fourother G D

07. Pitt PA

08. Hokkaido J

09. EUROCIM F

10. AIT LeuTech A

11. FIM S

12. DFL S

Key words:

AAAC

Mobile IPv6

QoS

Collaboration with other EC funded projects:

GRANT

GRANT

LONG

HAN

AGH University of Technology in Krakow
Abstract

The project's prime mission is to establish an appropriate infrastructure to operate the first open European environment for research organisations and industry to investigate a broad range of topics and issues covering NGN evolution, and create opportunities for strategic discussions on a global scale. The project is open for all organisations to share their opinions and discuss the issues in an open framework. The project has invited interested institutions to enroll as members in order to contribute to the objectives of this initiative by producing technology benchmarking, roadmaps and establish a close link with the global forums.

Objectives

The NGN Initiative's mission is to establish the infrastructure to operate the first open environment in Europe, where research on the whole range of Next Generation Networks (NGN) topics can be discussed, consensus achieved and collective outputs disseminated to the appropriate international standard bodies, fora and other organisations. It seeks to build a community of top as many R&D actions as exist in the broad domain of NGN. Being of worldwide interest, it is inevitable that some of the Internet-related topics addressed here will also be covered in the US Next Generation Internet (NGI) program. This creates an opportunity for strategic discussions to take place on this subject on a global scale.

The project will bring additional value to the IST Programme by solving complex multidisciplinary problems through the involvement of a variety of projects acting in a complementary manner. It will also encourage and support the production and submission of collective contributions to standards; a key process for deriving European advantage.

A further objective of this project is to give IST NGN projects - and the European research community in general - a strong collective voice and a structure through which industry and user awareness of NGN work and achievements in Europe will be dramatically improved.

The project will therefore encourage the creation of high quality and secure Next Generation Networks, allowing equitable access to knowledge and technology.

Aims and objectives that collectively combine to achieve the objectives identified above are:

- Establish a European driven (but open, internationally) initiative of NGN expertise that will be a catalyst function for clustering activities associated with IST projects, especially from the Units CI, ESI and Research Networks (RN).
- Benchmark the results from NGNI projects in IST against activities and developments in the rest of the world.
- Disseminate the collective achievements from the IST Programme, i.e.:
 - Produce and submit collective contributions to standards; a key process for deriving European advantage, and an activity strongly supported by the large industrial partners in the project.
 - Produce roadmaps describing trends and forecasts relating to NGN issues, taking into account the several contributing aspects of NGNs.
- Identify convergence opportunities offered by new developments.
- Identify innovative solutions as a result of having an overview of many technologies.

Technical Approach

The technical approach to achieve these objectives has 3 key components:

- The creation and maintenance of the infrastructure needed to support the project activities, and strategic liaison.
- The performing of technical activities related to the production of standards, benchmark reports and evolutionary roadmaps.
- The building of a critical mass of member organizations from whom experts can be found to lead the technical activities, contribute their ideas and experience, identify opportunities for novel products, collectively build consensus, and provide a representative endorsement of the results.

The NGN secretariat has been established to supervise the infrastructure to support the project activities. All public information will be hosted on the project website and the list of members with their links is also provided with the links to contact person of each organization. Member organizations are spread across the world and the experts from these organizations are active as contributing members in the thematic working groups established to achieve benchmark reports, roadmaps and standards liaison.

Thematic working groups have been set up to address different aspect of NGN such as access networks, photonic metro and core networks, QoS and multimedia services, NGN management including network performance monitoring, IPv6 deployment issues, seamless mobility, interoperability and VoIP technologies with experts spread across multiple organizations across Europe. The deliverables from these working groups are made available to the members for exploitation.

The core team of NGNI will compile the results of thematic working groups and produce the useful documents and resources that will be used for dissemination in major events such as NGN summits, concertation meetings, IST conferences, etc.

The process involved in achieving the success of the NGN roadmaps development is shown in the figure below.

- Develop visionary scenarios from experts and strategists
 - Top-down approach
 - View from the users, services and applications view
- Develop technology challenges
 - Bottom-up approach
 - Technology capabilities
- Develop the NGN and Coordinated Roadmaps
 - Reference for future strategy and investment
 - European strength in information society

Invited Experts

Visions

Next Generation Networks Initiative

NGN Scenarios

Visionary Expertise

NGN Working groups
Next Generation Networks Laboratories

Abstract

The project establishes a platform for the development of advanced Internet technologies, by provisioning the required system infrastructure and interactive applications, to realise Next Generation Network related experiments.

Objectives

 Provision of a test platform for Next Generation Networks:
 • Main topics addressed are: IPv6 and QoS.
 • Additional topics: security, mobility, access networks, interworking & interoperability, multimedia.
 • Support of IST and national research projects for testing their systems:
 • Applications and test equipment provision.
 • Link to TEN-155/GÉANT to test across 2 test-beds in Basel (CH) and Brussels (BE).

Technical Approach

NGN-LAB is making advanced networking infrastructure available in two interconnected test-beds, to support IST projects to test new technologies such as IP telephony, IP over xDSL, IP over ATM, IP over WDM, etc.

Test-bed

Two test-beds in NGN-LAB:
• Basel, MCLab: Multiple applications, terminals, LANs and WLANs, and connectivity to GÉANT.
 • Multiple access technologies.
 • IPv6 implemented and tested.
 • DiffServ environment available.
• Brussels, EuroDemo environment:
 • ADSL and ISDN access network.
 • Connectivity to GÉANT.
 • Multiple IPv6 applications.

In both test-beds, IPv6 applications are installed on:
• Windows 2000.
• Linux (Suse, RedHat, Debian).
• FreeBSD 4.4.

Applications

Ping, traceroute, tcp, netstat, DNS, DiffServ, traffic generators...

Innovation

NGN-LAB is liaising with other national and international test-beds and Forums, to promote the Next Generation Networks infrastructure for provisioning end-to-end services.

Key words:
Interoperability
Interworking
QoS
Next Generation Networks
Technical Approach

The SEEREN initiative aims at extending the European research network in the region by providing GÉANT connectivity to non-GÉANT countries and will act as enabler of joint research and educational activities, as a first step towards integrated eScience applications. SEEREN is expected to be an essential vehicle for the creation and exploitation of a range of new services and best current practices to support research and education as well as offering facilities for collaboration and experimentation carried out as part of the IST and other international programmes including the deployment of native IPv6 to the desktop.

Based on the SE Europe NRENs interconnectivity requirements, market conditions, supplier capabilities and technical, operational and commercial requirements, all possible implementation approaches and topology options of GÉANT–SEEREN interconnection will be assessed.

A tender will be prepared following EU legislation. After the evaluation of offers technically and financially, selection of suppliers and final negotiations, the final interconnection topology will be designed. Acceptance tests for connection lines and equipment will be defined, ensuring the quality-performance required by the SEE NRENs, configuring the network elements and ensuring the stable operation of the interconnections by day-to-day supervision.

The partners who are directly involved in the SEEREN project have a vast experience on developing and deploying world-class networking infrastructures. The involvement of TERENA, DANTE, GINET, HUNGARNET and RoEduNet will be vital to ensure the success of the project and the wide applicability of its results to the research & education communities involved and indirectly to other important socio-economic development aspects of the region (health care, industry, culture, tourism, trade and public administration).

Expected Results

The SEEREN project will promote regional relations in SE Europe by facilitating the cooperation amongst the participating countries and the integration of the region into the pan-European research and education community. The importance of the proposed initiative is emphasized by the fact that SE Europe was up to recently a source of political, social and economic instability.

The SEEREN project will smoothly introduce the aforementioned countries into the GÉANT community and will stimulate the launching of joint IST projects, widening the scope of existing IST actions. Hereby, this project can act as a vehicle for the participating countries to become more technology competent. The know-how transfer concerning project management and implementation will be achieved by means of direct or electronic interaction with the IST and the wide applicability of its results to the research & education communities involved and indirectly to other important socio-economic development aspects of the region.

The proposed project will promote the integration of the SE Europe region to the rest of the continent, via connections to GINET, and through it to its research activities throughout the world (Infrastructure, GÉANT, etc.). In addition, the European research, academic and industrial community will benefit from having easier access to highly qualified ICT researchers and professionals, who will eventually be the core base of SEEREN.

The project will have a positive effect in the area of “brain-drain” prevention making the right information and knowledge resources accessible to the scholars both locally and globally.
Technology for a Realistic End User Access Network Test-bed

Abstract

TORRENT is building a test-bed for multi-service residential access networks that will allow the project to demonstrate the benefits of intelligent control, both for the customer and for the network operators and service providers. The test-bed will support the definition of architectures that allow a home user’s quality of service expectations to be met by employing – in a way that is transparent to the user – the most appropriate core transport networks, be it connectionless or connection-oriented. Systems will be prototyped to segregate traffic according to its optimum mode of transportation and to manage routing and charging. TORRENT encompasses systems integration activities, new developments, and close liaison with emerging standards and specifications. TORRENT is basing its applications on the use of IPv6.

Objectives

The main objectives of TORRENT are to create:

• A test-bed to develop architectural frameworks for mapping service characteristics to network performance parameters.
• Functionality, using Agent Technologies, to negotiate with the available core networks on the user’s behalf, on issues such as bandwidth, quality of service and pricing.
• Capabilities, incorporated into a “Residential Gateway”, to enable communication between user terminals and the network, on policy matters relating to authorisation, authentication and accounting.
• A “Local Access Point” able to route services over the most appropriate available network standards for home networks.

Technical Approach

• TORRENT is developing an architectural framework in which service requirements can be mapped to network capabilities. These requirements include service management functionalities for authorisation, authentication and accounting.
• TORRENT is developing and implementing functionality, using Agent Technologies that are able to negotiate, on the user’s behalf, with the core networks regarding issues such as bandwidth, quality of service and pricing.
• TORRENT is developing a Residential Gateway, incorporating suitable service management functionalities and taking into account the need to handle various types of home network and local access networks carrying multiple types of services.

• TORRENT is developing a Local Access Point that is capable of recognising services coming from home users via a common access network, and routing these services over the most appropriate available core networks.
• TORRENT is combining these features into the TORRENT test-bed and is basing applications on the use of IPv6.

Task-bed

The TORRENT test-bed – as detailed above and in the figure – consists of Local Access Points and Residential Gateways together with agent-based software. This software provides the TORRENT test-bed with intelligence for key tasks such as service negotiation on the user’s behalf.

Applications

• TORRENT will show that its test-bed approach provides a sound generic platform for the definition, development and selection of new services. TORRENT will show that new applications and services can be developed by using standard plug-in-software components based on flexible intelligent agent technology.
• TORRENT will identify an integrated network which could provide a global capability for a full portfolio of applications and services. TORRENT will validate the key functionalities of the different layers of the network, as well as those of the gateways, between the layers in the test bed. TORRENT will identify the enabling technologies required to connect different test-beds in a pan-European context.
• TORRENT will determine the physical performance of the TORRENT test-bed. The test-bed must be able to respond rapidly to a multitude of demanding emerging customer requirements including QoS issues and related Service Level Agreements. In addition, the test-bed must be able to provide bandwidths sufficiently large to accommodate demanding customer requirements.
• TORRENT will make the results of its basic research available for scientific and technological development as well as to the international standards organisations.

Innovation

TORRENT provides innovation in 3 key areas: intelligence, inter-working and multi-service access. The approach based on this combination is technically challenging and has not been attempted before.

• TORRENT introduces intelligence into elements associated with the management of access networks, in order to allow a user’s QoS expectations to be met on a session-by-session basis, by selecting the most appropriate transport network at the time, in a way that is transparent, flexible, robust and efficient for the user.
• Interworking between different access network technologies is an integral part of this solution, which also provides improvements in response times from the network, and can reduce broadband traffic for applications such as video on demand. Interworking is summarised in a concept that we call BANP (Border of Network Processing).
• The multi-access nature of the developed test-bed integrates several technologies that operators use to provide broadband capacities in the access networks, including DSL and GRN. The integration of several access technologies that traditionally have been seen as isolated, reduces considerably the uncertainty faced from country to country and from network to network.
Abstract

The WirelessCabin project is developing wireless access technologies for an aircraft cabin. Several access technologies in the cabin are envisaged for passengers: UMTS for personal telephony and packet data, Bluetooth and WLAN for IP access. The Bluetooth interface will also be used for transport of UMTS services.

The project will define a system architecture for wireless access (UMTS, WLAN and Bluetooth™) in an aircraft cabin. The passenger will have the possibility to use its own personal equipment (mobile phone, laptop). For this, the project will develop a service integrator that maps the cabin services on a satellite bearer to be connected to the terrestrial infrastructure.

The concept of the wireless cabin access will be demonstrated in flight via satellite using an Airbus long-haul aircraft. The cabin services will provide mobility, VPNs and AAA functions which need to be developed for the mobile users.

Objectives

The demand for making air travel more pleasant, secure and productive for passengers is one of the winning factors both for airlines and the aircraft industry. While security and passenger safety have always been of prime concern, recent acts of international terrorism have clearly demonstrated the need for major improvements and new initiatives in these areas. Such developments can be brought about by the use of the latest in communications technologies. Besides, a wireless network might also support the airline personnel (cabin crew, maintenance crew) during their daily work (e.g. for mobile data access).

The goal of the WirelessCabin project is to develop technologies that enable the use of personal wireless communication devices inside an aircraft cabin.

Figure WirelessCabin Network Architecture

Technical Approach

The concept of having several mobile users with different access standards is called Collectively Mobile Heterogeneous Network (CMHN). The aircraft cabin represents such a CMHN supporting several radio access networks. The communication infrastructure to support such an network is depicted in the previous figure.

The architecture consists of (i) several wireless access segments in the aircraft cabin, (ii) a satellite segment for interconnection of the cabin with the terrestrial telecom networks, and (iii) an aircar service provider segment supporting the integrated cabin services.

The CMHN concept will be elaborated and the required protocols will be analysed and designed. A concept for providing different quality of service with variable bandwidth for each of the access standards will be developed and a handover strategy among several available satellite segments with eventual asymmetric bandwidth in up- and down-links will be defined.

For the wireless access, the propagation channel in the aircraft will be determined by a channel measurement campaign, and channel statistics and a model will be derived. This will yield to an interference analysis to determine the cell topology, but also the impact on avionic equipment in flight deck and bay.

On the protocol side the project will investigate the effect of the propagation delay on UMTS protocols and an encapsulation of UMTS services over Bluetooth™ will be developed.

Furthermore, a market survey will perform passenger and airline interviews, and a business relation model between service providers, airlines, and satellite providers will be established.

Innovation

The WirelessCabin project is a highly innovative concept that promises a quick, easy, and feasible technological solution for the personal and multimedia communications in an aircraft cabin. The wireless access solution is a new service compatible with other kinds of in-flight entertainment (IFE), such as live TV on board or provision of Internet access via special installed hardware in the cabin seats. Hence, it should not be seen as an alternative to wired architecture in an aircraft, but as a complementary service to the passengers. For instance, access to VPN or the possibility of keeping the user’s telephone number while flying, will become real with the network architecture described in this proposal. Wireless access provides not only these benefits, but also the following ones:

- Ease of connection.
- Allows mobility.
- Avoids additional cabling to all seats for connecting personal equipment and its consequent update for having always the latest technology WEB Mail Tools.
- Users can enjoy the services with their own personal profiles.

This new service contributes to the development of the Information Society, extending it to limits that today have not yet been crossed.

The WirelessCabin project will improve bearer satellite services for aeronautical communications, by supporting wireless access technologies inside the cabin.

Project name: WirelessCabin
Development and Demonstrator of Wireless Access for Multimedia Services in Aircraft Cabins
Contract no.: IST-2000-331666
Project type: R&D
Start date: 01/07/2002
Duration: 36 months
Total budget: 6.008.221 €
Funding from the EC: 3.200.609 €
Total effort in person-months: 459
Web site: http://www.wirelesscabin.com
Contact person: Axel Jahn
e-mail: Axel.Jahn@dlr.de
tel.: +49 8153 282845
fax.: +49 8153 282844
Project participants:
01. Airbus
02. DLR
03. Ericsson
04. ESYS
05. Inmarsat
06. KID Systeme
07. Siemens
08. TriaGnoSys
09. U. of Bradford, UK
10. Siemens, A
11. Inmarsat, UK
12. KID Systeme, D
13. ESYS, UK
14. Ericsson, I
15. Siemens, A
16. TriaGnoSys, D
17. U. of Bradford, UK
Key words:
Aeronautical Communications
Mobile Networks
Satellite Services
Demonstration Wireless access
Collaboration with other EC funded projects:
RTN
ULTIMAS

<table>
<thead>
<tr>
<th>Project name</th>
<th>Development and Demonstrator of Wireless Access for Multimedia Services in Aircraft Cabins</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contract no.</td>
<td>IST-2000-331666</td>
</tr>
<tr>
<td>Project type</td>
<td>R&D</td>
</tr>
<tr>
<td>Start date</td>
<td>01/07/2002</td>
</tr>
<tr>
<td>Duration</td>
<td>36 months</td>
</tr>
<tr>
<td>Total budget</td>
<td>6.008.221 €</td>
</tr>
<tr>
<td>Funding from the EC</td>
<td>3.200.609 €</td>
</tr>
<tr>
<td>Total effort in person-months</td>
<td>459</td>
</tr>
<tr>
<td>Web site</td>
<td>http://www.wirelesscabin.com</td>
</tr>
<tr>
<td>Contact person</td>
<td>Axel Jahn</td>
</tr>
<tr>
<td>e-mail</td>
<td>Axel.Jahn@dlr.de</td>
</tr>
<tr>
<td>tel.</td>
<td>+49 8153 282845</td>
</tr>
<tr>
<td>fax.</td>
<td>+49 8153 282844</td>
</tr>
<tr>
<td>Project participants</td>
<td>01. Airbus, 02. DLR, 03. Ericsson, 04. ESYS, 05. Inmarsat, 06. KID Systeme, 07. Siemens, 08. TriaGnoSys, 09. U. of Bradford, UK</td>
</tr>
<tr>
<td>Key words</td>
<td>Aeronautical Communications, Mobile Networks, Satellite Services, Demonstration Wireless access</td>
</tr>
<tr>
<td>Collaboration with other EC funded projects</td>
<td>RTN, ULTIMAS</td>
</tr>
</tbody>
</table>
Abstract

Requirements emerging from the nature of safety and security providing organisations operating in varying degrees of emergency (in particular communication and information needs) will be specified and used in the scenario test cases.

The services in the tests will be enabled by three main technologies: mobile middleware, location-based services, and video-streaming.

Mobile wireless middleware has to provide access to 2.5 - 3G telephony technology. This technology shall be optimised concerning bandwidth and package transportation. Mobile Middleware that guarantees a maximum of performance will be used. The applications that will be designed or adapted have to be attached to mobile middleware. Besides IVR technology, the new IVR has to be evaluated as transport protocol.

Technologies for location-based services have to be tried and compared.

 Provision of a proven 2.5G mobile network and setup of an experimental 3G network to make it for 3 trial scenarios possible to perform a field test on the basis of a realistic network. Measurement equipment will be used to record the load of the network. Compression video streaming technologies (mp44) will be tested as data exchange from database to database client. These video streaming technologies have to be optimised in conjunction with the used mobile middleware. Furthermore, connection and data traffic between 2.5G and 3G has to be tested.

Billing components have to be adapted and augmented to provide test cases for the application scenarios Tele Ambulance, Emergency Management, and Transport Surveillance. Technical data have to be collected on the performance and real-world suitability of the selected application scenarios.

Relevant applications, including location-based services and video streaming, will be tested on mobile devices e.g. PocketPCs (PDAs), Notebooks, and IVR - wireless telephones, Platforms and protocols are based on 2.5 - 3G Technology with focus on interoperability between both generations.

Objectives

The eMOTION project is a trial action aiming at the adaptation and introduction of not yet fully established leading-edge technologies in mobile applications and its joint evaluation.

The overall objective of eMOTION is to enhance citizen safety & security by demonstrating the interoperability of diverse wireless technologies (2.5G-3G) and their mutual support for a better response to emergency cases.

Three trial set-ups will be used for tests: Tele Ambulance, Emergency Management, and Transport Surveillance. Although the scenarios are thematically different, they are similar in structure and in their technical requirements. They need e.g. interoperability between networks, high bandwidth during peak phases, location accuracy, and short response times. In all scenarios, empirical data will be gathered on the performance and real-world adequacy of the wireless technologies to be established in the near future. The data from the three scenarios shall contribute to an integrated view on the suitability of mobile technology in safety and security related areas.

Within the trials Location Based Services and Mobile Middleware will be used. The adaption of this innovative service the trial applications of Tele Ambulance, Emergency Management, and Transport Surveillance will help up to an enhanced quality of life by providing and demonstrating technological solutions in order to provide cross operator/ cross border operation of the selected application scenarios. Ex. regarding transport surveillance across different network operator borders.

Location Based Services: The provision of location information as a network service to mobile applications is a new key feature of 2.5 and 3G networks. Emergency management is an inherently location information dependent application field.

Innovation

The goal of creating a truly mobile tactical response system for e-logistics cannot be achieved with today's communication technologies. Hence, the technology serving second generation mobile communications (2G) are limited even in their extended form. What was sufficient for high-quality service with digital voice communication and some Internet functions via the mobile phone, is not sufficient for video telephony in real time, multimedia messaging and access to Internet pages with complex graphics and layouts.

This is the starting point for 2.5G and 3G in the context of tactical response as it aims to provide greater security for the public and more services than were previously possible.

Instead of using a single tactical response test case, a generic model is proposed. Test cases are based on the three domains Tele Ambulance, Emergency Management, and Transport Surveillance are then generated from the model. In this way, the results become comparable and more widely applicable, even to tactical domains not covered by the test cases.

Tactical response measures are triggered by an alert (e.g. a distress call or an event report) and typically include assignment of workers, processes, vehicles, communication channels and other resources. Hence, eMOTION aims to provide innovations in the field of mobile e-logistics, induced through mobile applications. The 2.5G and 3G mobile telecommunication technology and the field of tactical management out of which the three application cases with different background have been selected. The application of 2.5G and 3G technologies to the inherent and apparent complex task of tactical management is an innovation that will be applicable to mobile business processes in general.